PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling spatial variation of extreme precipitation over Ho Chi Minh City under nonstationary conditio

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the magnitude and spatial variation of extreme rainfall events are required for decision making and adaptation strategies for flood risk. In Ho Chi Minh City (HCMC), heavy rainfall, which is considered as a main cause of floods, witnessed an increase in frequency and magnitude in last few decades. Although nonstationarity in extreme rainfall has been proved in many places of the world, research into nonstationarity feature in extreme rainfall in HCMC has not been paid attention thoroughly. In this study, the spatial variation of extreme precipitation over Ho Chi Minh City is modelled under nonstationary condition. The generalized extreme value (GEV) distribution with location made a nonlinear function of time is applied to annual maximum daily rainfall. The study results show that the nonstationary GEV model is found to be superior in capturing extreme precipitation events when compared to the stationary GEV model. The extreme rainfall estimates under the stationary condition are lower than those under the nonstationary condition in most stations. Besides, the spatial variation of extreme rainfall under nonstationary condition shows a significant difference in extreme estimates between the periods of 1980–1984 and 2010–2014 in study area.
Czasopismo
Rocznik
Strony
849--861
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Department of Civil Engineering, National Institute of Technology, Warangal 506004, India
  • Division of Water Resources and Environment, Thuyloi University, Ho Chi Minh 700000, Vietnam
autor
  • Department of Civil Engineering, National Institute of Technology, Calicut 673601, India
  • Department of Civil Engineering, National Institute of Technology, Warangal 506004, India
  • Department of Civil Engineering, National Institute of Technology, Warangal 506004, India
Bibliografia
  • 1. ADB (2010) Ho Chi Minh City adaptation to climate change: summary report. Asian Development Bank. https://www.adb.org/publications/ho-chi-minh-city-adaptation-climate-change-summary-report. Accessed 19 Dec 2016
  • 2. Agilan V, Umamahesh N (2015) Detection and attribution of non-stationarity in intensity and frequency of daily and 4-h extreme rainfall of Hyderabad, India. J Hydrol 530:677–697. https://doi.org/10.1016/j.jhydrol.2015.10.028
  • 3. Agilan V, Umamahesh N (2016a) Modelling nonlinear trend for developing non-stationary rainfall intensity–duration–frequency curve. Int J Climatol. https://doi.org/10.1002/joc.4774
  • 4. Agilan V, Umamahesh N (2016b) What are the best covariates for developing non-stationary rainfall intensity–duration–frequency relationship? Adv Water Resour. https://doi.org/10.1016/j.advwatres.2016.12.016
  • 5. Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185. https://doi.org/10.1038/ngeo1731
  • 6. Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644
  • 7. Cai W, Rensch P (2012) The 2011 southeast Queensland extreme summer rainfall: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys Res Lett. https://doi.org/10.1029/2011GL050820
  • 8. Chan JC, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over south China. Geophys Res Lett. https://doi.org/10.1029/2004GL022015
  • 9. Chawla I, Mujumdar P (2018) Partitioning uncertainty in streamflow projections under nonstationary model conditions. Adv Water Resour 112:266–282
  • 10. Chen W, Feng J, Wu R (2013) Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J Clim 26:622–635. https://doi.org/10.1175/JCLI-D-12-00021.1
  • 11. Cheng L, AghaKouchak A (2014) Nonstationary precipitation intensity–duration–frequency curves for infrastructure design in a changing climate. Sci Rep. https://doi.org/10.1038/srep07093
  • 12. Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Change 127:353–369. https://doi.org/10.1007/s10584-014-1254-5
  • 13. Chu L, McAleer M, Chang C-H (2013) Statistical modelling of extreme rainfall in Taiwan. http://hdl.handle.net/1765/38227. Accessed 19 Dec 2016
  • 14. Coles S (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, London. https://doi.org/10.1007/978-1-4471-3675-0
  • 15. Douglas EM, Fairbank CA (2010) Is precipitation in northern New England becoming more extreme? Statistical analysis of extreme rainfall in Massachusetts, New Hampshire, and Maine and updated estimates of the 100-year storm. J Hydrol Eng 16:203–217. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000303
  • 16. Feng S, Nadarajah S, Hu Q (2007) Modeling annual extreme precipitation in China using the generalized extreme value distribution. J Meteorol Soc Jpn 85:599–613. https://doi.org/10.2151/jmsj.85.599
  • 17. Gobin A, Nguyen H, Pham V, Pham H (2015) Heavy rainfall patterns in Vietnam and their relation with ENSO cycles. Int J Climatol. https://doi.org/10.1002/joc.4451
  • 18. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350. https://doi.org/10.1175/JCLI3339.1
  • 19. Guhathakurta P, Sreejith O, Menon P (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120:359. https://doi.org/10.1007/s12040-011-0082-5
  • 20. Hurvich CM, Tsai C-L (1995) Model selection for extended quasi-likelihood models in small samples. Biometrics. https://doi.org/10.2307/2533006
  • 21. Katz RW (2013) Statistical methods for nonstationary extremes. In: Extremes in a changing climate. Springer, Dordrecht, pp 15–37. https://doi.org/10.1007/978-94-007-4479-0_2
  • 22. Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  • 23. Kendall MG (1962) Rank correlation methods. Hafner Publishing Company, New York
  • 24. Kenyon J, Hegerl GC (2010) Influence of modes of climate variability on global precipitation extremes. J Clim 23:6248–6262. https://doi.org/10.1175/2010JCLI3617.1
  • 25. Khaliq M, Ouarda T, Ondo J-C, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329:534–552. https://doi.org/10.1016/j.jhydrol.2006.03.004
  • 26. Kioutsioukis I, Melas D, Zerefos C (2010) Statistical assessment of changes in climate extremes over Greece (1955–2002). Int J Climatol 30:1723–1737. https://doi.org/10.1002/joc.2030
  • 27. Lasage R, Veldkamp T, De Moel H, Van T, Phi H, Vellinga P, Aerts J (2014) Assessment of the effectiveness of flood adaptation strategies for HCMC. Nat Hazards Earth Syst Sci 14:1441–1457. https://doi.org/10.5194/nhess-14-1441-2014
  • 28. Le Vo P (2007) Urbanization and water management in Ho Chi Minh City, Vietnam-issues, challenges and perspectives. GeoJournal 70:75–89. https://doi.org/10.1007/s10708-008-9115-2
  • 29. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187
  • 30. Milly PC, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574. https://doi.org/10.1126/science.1151915
  • 31. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. https://doi.org/10.1038/nature09763
  • 32. Mondal A, Mujumdar PP (2015) Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India. J Hydrol 521:217–231. https://doi.org/10.1016/j.jhydrol.2014.11.071
  • 33. Nadarajah S (2005) Extremes of daily rainfall in West Central Florida. Clim Change 69:325–342. https://doi.org/10.1007/s10584-005-1812-y
  • 34. Nguyen KC, Katzfey JJ, McGregor JL (2014) Downscaling over Vietnam using the stretched-grid CCAM: verification of the mean and interannual variability of rainfall. Clim Dyn 43:861–879. https://doi.org/10.1007/s00382-013-1976-5
  • 35. Panagoulia D, Economou P, Caroni C (2014) Stationary and nonstationary generalized extreme value modelling of extreme precipitation over a mountainous area under climate change. Environmetrics 25:29–43. https://doi.org/10.1002/env.2252
  • 36. Park JS, Kang HS, Lee YS, Kim MK (2011) Changes in the extreme daily rainfall in South Korea. Int J Climatol 31:2290–2299. https://doi.org/10.1002/joc.2236
  • 37. Pingale SM, Khare D, Jat MK, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos Res 138:73–90. https://doi.org/10.1016/j.atmosres.2013.10.024
  • 38. Pohlert T (2016) Non-parametric trend tests and change-point detection. The R Foundation. https://cran.mtu.edu/web/packages/trend/vignettes/trend.pdf. Accessed 19 Dec 2016
  • 39. Rakhecha P, Soman M (1994) Trends in the annual extreme rainfall events of 1 to 3 days duration over India. Theor Appl Climatol 48:227–237. https://doi.org/10.1007/BF00867053
  • 40. Sugahara S, Da Rocha RP, Silveira R (2009) Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. Int J Climatol 29:1339–1349. https://doi.org/10.1002/joc.1760
  • 41. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. https://doi.org/10.3354/cr00953
  • 42. Um M-J, Kim Y, Markus M, Wuebbles DJ (2017) Modeling nonstationary extreme value distributions with nonlinear functions: an application using multiple precipitation projections for US cities. J Hydrol 552:396–406. https://doi.org/10.1016/j.jhydrol.2017.07.007
  • 43. Villafuerte MQ, Matsumoto J, Kubota H (2015) Changes in extreme rainfall in the Philippines (1911–2010) linked to global mean temperature and ENSO. Int J Climatol 35:2033–2044. https://doi.org/10.1002/joc.4105
  • 44. Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26:3904–3918. https://doi.org/10.1175/JCLI-D-12-00502.1
  • 45. Wi S, Valdés JB, Steinschneider S, Kim T-W (2016) Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima. Stochastic Environ Res Risk Assess 30:583–606
  • 46. World Bank (2010) Climate risks and adaptation in Asian coastal megacities: a synthesis report. http://documents.worldbank.org/curated/en/866821468339644916/Climate-risks-and-adaptation-in-Asian-coastal-megacities-a-synthesis-report. Accessed 20 Dec 2016
  • 47. Yen M-C, Chen T-C, Hu H-L, Tzeng R-Y, Dinh DT, Nguyen TTT, Wong CJ (2011) Interannual variation of the fall rainfall in Central Vietnam. J Meteorol Soc Jpn 89:259–270. https://doi.org/10.2151/jmsj.2011-A16
  • 48. Yilmaz AG, Imteaz MA, Perera BJC (2016) Investigation of non-stationarity of extreme rainfalls and spatial variability of rainfall intensity–frequency–duration relationships: a case study of Victoria, Australia. Int J Climatol 37:430–442. https://doi.org/10.1002/joc.4716
  • 49. Zhang Q, Xu C-Y, Zhang Z, Chen YD, C-l Liu, Lin H (2008) Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J Hydrol 353:215–227. https://doi.org/10.1016/j.jhydrol.2007.11.023
  • 10.1007/s11600-019-00295-1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a81a5ed1-00e0-44e0-909d-958f8c192b75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.