PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Spectroscopy of Equal-Channel Angular Pressed Fe-Cr Alloys and Tungsten

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Spektroskopia mechaniczna stopów Fe-Cr i wolframu wyciskanych przez kanał kątowy
Języki publikacji
EN
Abstrakty
EN
nternal friction technique was used to investigate the microstructural stability of equal-channel angular pressed (ECAP) 9Cr1Mo steel (T91), Fe-18wt.%Cr alloy, and pure W. Several non-relaxation internal friction peaks are observed in three ECAP-strained specimens, which are related to the microstructural transition from a severely deformed state to a static recovery state of dislocations, and to recrystallized state. Along with the disappearance of the P1 peak, another relaxation internal friction peak P2 is observed during the second heating run only in Fe-18wt.%Cr alloy, and it does not disappear even during subsequent third heating run. This peak is not observed in T91 steel and W. The P2 peak is likely associated with a process of grain boundary (GB) sliding. Unlike T91, no abundant carbide precipitates distribute on GBs to pin GB and repulse GB sliding, thus, the P2 peak only occurs in Fe-18wt.%Cr alloy. It is concluded that high-temperature internal friction measurements are required to detect the grain boundary peak in pure W.
PL
Technika tarcia wewnętrznego została użyta do zbadania stabilności mikrostruktury poddanych wyciskaniu przez kanał kątowy stali 9Cr1Mo (T91), stopu Fe-18wt%Cr, i czystego W. Zaobserwowano wiele nie-relaksacyjnych pików tarcia wewnętrznego w trzech próbkach odkształconych przez ECAP, które są związane z przejściem ze stanu silnie odkształconego do statycznego stanu zdrowienia dyslokacji, i do stanu zrekrystalizowanego. Wraz z zanikiem piku P1, tylko w przypadku stopu Fe-18wt%Cr obserwowany jest inny pik P2 relaksacji tarcia wewnętrznego podczas drugiego ogrzewania, i nie znika nawet w kolejnym trzecim etapie ogrzewania. Pik ten nie jest obserwowany w stali T91 i W. Pik P2 prawdopodobnie związany jest procesem poślizgu granicy ziaren. W przeciwieństwie do stali T91, brak bogatych w węglik wydzieleń na granicach ziaren, które by unieruchomiły granice i uniemożliwiły poślizg, stąd pik P2 występuje tylko w przypadku stopu Fe-18wt.%Cr. Stwierdzono, że pomiary tarcia wewnętrznego w wysokiej temperaturze są potrzebne, aby wykryć pik granicy ziarna w czystym W.
Twórcy
autor
  • KEY Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
autor
  • KEY Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
autor
  • KEY Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
autor
  • KEY Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
autor
  • KEY Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
Bibliografia
  • [1] R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater. 68, 813-816 (2013).
  • [2] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61, 782-817 (2013).
  • [3] R. Z. Valiev, T. G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater Sci. 51, 881-981 (2006).
  • [4] S. Komura, Z. Horita, M. Nemoto, T. G. Langdon, Influence of stacking fault energy on microstructural development in equalchannel angular pressing, J. Mater. Res. 14, 4044-4050 (1999).
  • [5] G. D. Fan, M. Y. Zheng, X. S. Hu, C. Xu, K. Wu, I. S. Golovin, Improved mechanical property and internal friction of pure Mg processed by ECAP, Mater. Sci. Eng. A 556, 588-594 (2012).
  • [6] M. Suś-Ryszkowska, T. Wejrzanowski, Z. Pakieła, K. Kurzydłowski, Microstructure of ECAP severely deformed iron and its mechanical properties, Mater. Sci. Eng. A 369, 151-156 (2004).
  • [7] Y. Zhang, A. V. Ganeev, J. T. Wang, J. Q. Liu, I. V. Alexandrov, Observations on the ductile-to-brittle transition in ultrafinegrained tungsten of commercial purity, Mater. Sci. Eng. A 503, 37-40 (2009).
  • [8] Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, Y. T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater. 52, 4589-4599 (2004).
  • [9] Y. Fukuda, K. Oh-Ishi, Z. Horita, T. Langdon, Processing of a low-carbon steel by equal-channel angular pressing, Acta Mater. 50, 1359-1368 (2002).
  • [10] M. Eddahbi, M. A. Monge, T. Leguey, P. Fernández, R. Pareja, Texture and mechanical properties of EUROFER 97 steel processed by ECAP, Mater. Sci. Eng. A 528, 5927-5934 (2011).
  • [11] I. S. Glovin, A. V. Mikhaylovskaya, H. R. Sinning, Role of the b-phase in grain boundary and dislocation anelasticity in binary Al-Mg alloys, J. Alloy Compd. 577, 622-632 (2013).
  • [12] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).
  • [13] R. de Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland Publishing Company, (1972).
  • [14] T. S. Kê, Internal Friction Theory in Solids, Science Press, Beijing, (2000).
  • [15] L. B. Magalas, Mechanical spectroscopy – Fundamentals, Sol. St. Phen. 89, 1-22 (2003).
  • [16] S. Etienne, S. Elkoun, L. David, L. B. Magalas, Mechanical spectroscopy and other relaxation spectroscopies, Sol. St. Phen. 89, 31-66 (2003).
  • [17] M. S. Blanter, I. S. Golovin, H. Neuhauser, H. R. Sinning, Internal Friction in Metallic Materials: A Handbook, Springer, (2007).
  • [18] L. B. Magalas, Mechanical spectroscopy, internal friction and ultrasonic attenuation. Collection of works, Mater. Sci. Eng. A, 521-522, 405-415 (2009).
  • [19] Q. F. Fang, X. P. Wang, X. B. Wu, H. Lu, The basic principles and applications of internal friction and mechanical spectroscopy, Physics 40, 786-793 (2011).
  • [20] T. Hao, Z. Q. Fan, S. X. Zhao, G. N. Luo, C. S. Liu, Q. F. Fang, Microstructures and properties of ultrafine-grained tungsten produced by equal-channel angular pressing at low temperatures, J. Nucl. Mater. 433, 351-356 (2013).
  • [21] T. Hao, Z. Q. Fan, S. X. Zhao, G. N. Luo, C. S. Liu, Q. F. Fang, Strengthening mechanism and thermal stability of severely deformed ferritic/martensitic steel, Mater. Sci. Eng. A 596, 244-249 (2014).
  • [22] I. S. Golovin, P. Pal-Val, L. Pal-Val, E. Vatazhuk, Y. Estrin, The effect of annealing on the internal friction in ECAP-modified ultrafine grained copper, Sol. St. Phen. 184, 289-294 (2012).
  • [23] N. Kobelev, E. Kolyvanov, Y. Estrin, Temperature dependence of sound attenuation and shear modulus of ultra fine grained copper produced by equal channel angular pressing, Acta Mater. 56, 1473-1481 (2008).
  • [24] B. Fournier, M. Sauzay, A. Pineau, Micromechanical model of the high temperature cyclic behavior of 9-12% Cr martensitic steels, Int. J. Plast. 27, 1803-1816 (2011).
  • [25] Y. V. Konobeev, A. M. Dvoriashin, S.I . Porollo, F. A. Garner, Swelling and microstructure of pure Fe and Fe-Cr alloys after neutron irradiation to ~26 dpa at 400ºC, J. Nucl. Mater. 355, 124-130 (2006).
  • [26] W. Benoit, High-temperature relaxations, Mater. Sci. Eng. A 370, 12-20 (2004).
  • [27] U. Ziebart, H. Schultz, Dislocation relaxation peaks in high purity tungsten single crystals, J. de Phys. 44 (C9), 691-696 (1983).
  • [28] H. Schultz, G. Funk, U. Ziebart, R. Bauer, The intrinsic dislocation relaxation spectrum of niobium, tantalum and tungsten, J. de Phys. 46 (C10), 289-292 (1985).
  • [29] I. Berlec, The effects of impurities and heat treatment on the internal friction of tungsten at high temperatures, Metall. Trans. 1, 2677-2683 (1970).
Uwagi
EN
This work was financially supported by the National Natural Science Foundation of China (Grant No. 11374299 and No. 051071148.)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a81979b7-cf5f-4432-9f25-a87f64d88842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.