PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparative assessment of texture features for the identification of cancer in ultrasound images: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we review the use of texture features for cancer detection in Ultrasound (US) images of breast, prostate, thyroid, ovaries and liver for Computer Aided Diagnosis (CAD) systems. This paper shows that texture features are a valuable tool to extract diagnostically relevant information from US images. This information helps practitioners to discriminate normal from abnormal tissues. A drawback of some classes of texture features comes from their sensitivity to both changes in image resolution and grayscale levels. These limitations pose a considerable challenge to CAD systems, because the information content of a specific texture feature depends on the US imaging system and its setup. Our review shows that single classes of texture features are insufficient, if considered alone, to create robust CAD systems, which can help to solve practical problems, such as cancer screening. Therefore, we recommend that the CAD system design involves testing a wide range of texture features along with features obtained with other image processing methods. Having such a compet-itive testing phase helps the designer to select the best feature combination for a particular problem. This approach will lead to practical US based cancer detection systems which deliver real benefits to patients by improving the diagnosis accuracy while reducing health care cost.
Twórcy
autor
  • Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom
  • Department of Electronic & Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
  • Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
autor
  • Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
autor
  • Department of Electronic & Computer Engineering, Ngee Ann Polytechnic, Singapore
autor
  • Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
  • Faculty of Medicine, Department of Radiology, Chiang Mai University, Thailand
autor
  • Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Bibliografia
  • [1] Siegel RL, Miller KD, Jemal A. Cancer statistics 2015. CA Cancer J Clin 2015;65(1):5–29.
  • [2] Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014;74 (11):2913–21.
  • [3] Siegel R, Jemal A. Cancer facts & figures 2015. American Cancer Society.
  • [4] Schottenfeld D. Cancer epidemiology and prevention. Oxford University Press; 2006.
  • [5] Buell P, Dunn JE. Cancer mortality among Japanese ISSEI and NISEI of California. Cancer 1965;18(5):656–64.
  • [6] Acharya UR, Faust O, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS. An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans. IEEE Trans Instrum Meas 2012;61(4):1045–53.
  • [7] Acharya UR, Faust O, Molinari F, Sree SV, Junnarkar SP, Sudarshan V. Ultrasound-based tissue characterization and classification of fatty liver disease: a screening and diagnostic paradigm. Knowl Based Syst 2015;75:66–77.
  • [8] Acharya RU, Faust O, Alvin A, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. J Med Syst 2012;36(3):1861–71.
  • [9] Faust O, Acharya UR, Sudarshan VK, San Tan R, Yeong CH, Molinari F, Ng KH. Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review. Phys Med 2017;33:1–15.
  • [10] Newman PG, Rozycki GS. The history of ultrasound. Surg Clin N Am 1998;78(2):179–95.
  • [11] Kendall JL, Hoffenberg SR, Smith RS. History of emergency and critical care ultrasound: the evolution of a new imaging paradigm. Crit Care Med 2007;35(5):S126–30.
  • [12] Chen C-h, Pau L-F, Wang PS-p. Handbook of pattern recognition and computer vision, Vol. 2. World Scientific; 1993.
  • [13] Bevk M, Kononenko I. A statistical approach to texture description of medical images: a preliminary study. Proceedings of the 15th IEEE Symposium on Computer-based Medical Systems, 2002 (CBMS 2002). IEEE; 2002. p. 239–44.
  • [14] Lizzi FL, Greenebaum M, Feleppa EJ, Elbaum M, Coleman DJ. Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J Acoust Soc Am 1983;73(4):1366–73.
  • [15] Wu W-J, Moon WK. Ultrasound breast tumor image computer-aided diagnosis with texture and morphological features. Acad Radiol 2008;15(7):873–80.
  • [16] Faust O, Acharya UR, Ng E, Hong TJ, Yu W. Application of infrared thermography in computer aided diagnosis. Infrared Phys Technol 2014;66:160–75.
  • [17] Acharya UR, Faust O, Kadri NA, Suri JS, Yu W. Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput Biol Med 2013;43 (10):1523–9.
  • [18] Acharya UR, Sree SV, Krishnan MMR, Molinari F, Saba L, Ho SYS, Ahuja AT, Ho SC, Nicolaides A, Suri JS. Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med Biol 2012;38(6):899–915.
  • [19] Somwanshi DK, Yadav AK, Roy R. Medical images texture analysis: a review. 2017 International Conference on Computer, Communications and Electronics (Comptelix). IEEE; 2017. p. 436–41.
  • [20] Jalalian A, Mashohor SB, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 2013;37(3):420–6.
  • [21] Cher ML, Honn KV, Raz A. Prostate cancer: new horizons in research and treatment. Springer; 2002.
  • [22] Zhao H, Zhu Q, Wang Z. Detection of prostate cancer with three-dimensional transrectal ultrasound: correlation with biopsy results. Br J Radiol 2012;85(1014):714–9.
  • [23] Curley SA. Liver cancer. Springer Science & Business Media; 1998.
  • [24] Virmani J, Kumar V, Kalra N, Khandelwal N. Neural network ensemble based CAD system for focal liver lesions from b-mode ultrasound. J Digit Imaging 2014;27(4):520–37.
  • [25] Banks E, Bartlett J. Ovarian cancer: methods and protocols; 2000.
  • [26] Chen VW, Ruiz B, Killeen JL, Coté TR, Wu XC, Correa CN, Howe HL. Pathology and classification of ovarian tumors. Cancer 2003;97(S10):2631–42.
  • [27] Wartofsky L, Van Nostrand D. Thyroid cancer: a comprehensive guide to clinical management. Springer; 2016.
  • [28] Koundal D, Gupta S, Singh S. Computer-aided diagnosis of thyroid nodule: a review. Int J Comput Sci Eng Surv 2012;3 (4):67.
  • [29] Szabo TL. Diagnostic ultrasound imaging: inside out. Academic Press; 2004.
  • [30] Reid J. The measurement of scattering. Tissue Characterization with Ultrasound. 1986;81–114.
  • [31] Acharya UR, Chowriappa P, Fujita H, Bhat S, Dua S, Koh JE, Eugene L, Kongmebhol P, Ng K. Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowl Based Syst 2016;107:235–45.
  • [32] Box JF. Guinness, gosset, fisher, and small samples. Stat Sci 1987;45–52.
  • [33] Shneiderman B, Wattenberg M. Ordered treemap layouts. Proceedings of the IEEE Symposium on Information Visualization, vol. 73078; 2001. p. 1–6.
  • [34] Gurney K. An introduction to neural networks. CRC press; 1997.
  • [35] Steinwart I, Christmann A. Support vector machines. Springer Science & Business Media; 2008.
  • [36] Rokach L, Maimon O. Data mining with decision trees: theory and applications. World scientific; 2014.
  • [37] Tarter ME, Lock MD. Model-free curve estimation, Vol. 56. CRC Press; 1993.
  • [38] Thirumuruganathan S. A detailed introduction to k-nearest neighbor (KNN) algorithm. Retrieved March; 20. 2010;p. 2012.
  • [39] Specht DF. Probabilistic neural networks. Neural Netw 1990;3(1):109–18.
  • [40] Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3. IBM New York; 2001. p. 41–6.
  • [41] James DL, Miikkulainen R. SARDNET: a self-organizing feature map for sequences. Adv Neural Inf Process Syst 1995;7:577.
  • [42] Rosenblatt F. Principles of neurodynamics. perceptrons and the theory of brain mechanisms, Tech. rep.. DTIC Document; 1961.
  • [43] Haykin S, Network N. A comprehensive foundation. Neural Netw 2004;2(2004):41.
  • [44] Huang Y-L, Chen D-R, Liu Y-K. Breast cancer diagnosis using image retrieval for different ultrasonic systems. 2004 International Conference on Image Processing. ICIP'04, vol. 5. IEEE; 2004. p. 2957–60.
  • [45] Huang Y-L, Lin S-H, Chen D-R. Computer-aided diagnosis applied to 3-D US of solid breast nodules by using principal component analysis and image retrieval. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE; 2006. p. 1802–5.
  • [46] Huang Y-L, Wang K-L, Chen D-R. Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 2006;15(2):164–9.
  • [47] Chen D-R, Kuo W-J, Chang R-F, Moon WK, Lee CC. Use of the bootstrap technique with small training sets for computer-aided diagnosis in breast ultrasound. Ultrasound Med Biol 2002;28(7):897–902.
  • [48] Chang R-F, Wu W-J, Moon WK, Chen D-R. Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med Biol 2003;29(5):679–86.
  • [49] Garra BS, Krasner BH, Horii SC, Ascher S, Mun SK, Zeman RK. Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis. Ultrasonic Imaging 1993;15(4):267–85.
  • [50] Shi X, Cheng H, Hu L. Mass detection and classification in breast ultrasound images using fuzzy SVM. JCIS. 2006. pp. 1–4.
  • [51] Gómez W, Pereira W, Infantosi AFC. Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Trans Med Imaging 2012;31(10):1889–99.
  • [52] Scheipers U, Lorenz A, Pesavento A, Ermert H, Sommerfeld H-J, Garcia-Schurmann M, Kuhne K, Senge T, Philippou S. Ultrasonic multifeature tissue characterization for the early detection of prostate cancer. Ultrasonics Symposium, 2001 IEEE, vol. 2. IEEE; 2001. p. 1265–8.
  • [53] Richard WD, Keen CG. Automated texture-based segmentation of ultrasound images of the prostate. Comput Med Imaging Graph 1996;20(3):131–40.
  • [54] Mohamed MM, Abdel-Galil TK, El-saadany EF, Fenster A, Downey DB, Rizkalla K. Prostate cancer diagnosis based on Gabor filter texture segmentation of ultrasound image. IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering, vol. 3. IEEE; 2003. p. 1485–8.
  • [55] Basset O, Sun Z, Mestas JL, Gimenez G. Texture analysis of ultrasonic images of the prostate by means of co-occurrence matrices. Ultrason Imaging 1993;15(3):218–37.
  • [56] Han SM, Lee HJ, Choi JY. Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. J Digit Imaging 2008;21(1):121–33.
  • [57] Huynen AL, Giesen RJB, De La Rosette JJMCH, Aarnink RG, Debruyne FMJ, Wijkstra H. Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. Ultrasound Med Biol 1994;20(1):1–10.
  • [58] Scheipers U, Ermert H, Sommerfeld H-J, Garcia-Schürmann M, Senge T, Philippou S. Ultrasonic multifeature tissue characterization for prostate diagnostics. Ultrasound Med Biol 2003;29(8):1137–49.
  • [59] Pavlopoulos S, Kyriacou E, Koutsouris D, Blekas K, Stafylopatis A, Zoumpoulis P. Fuzzy neural network-based texture analysis of ultrasonic images. IEEE Eng Med Biol Mag 2000;19(1):39–47.
  • [60] Poonguzhali S, Ravindran G. Automatic classification of focal lesions in ultrasound liver images using combined texture features. Inf Technol J 2008;7(1):205–9.
  • [61] Xian G-m. An identification method of malignant and benign liver tumors from ultrasonography based on glcm texture features and fuzzy svm. Expert Syst Appl 2010;37 (10):6737–41.
  • [62] Acharya UR, Sree SV, Ribeiro R, Krishnamurthi G, Marinho RT, Sanches J, Suri JS. Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys 2012;39(7):4255–64.
  • [63] Singh M, Singh S, Gupta S. An information fusion based method for liver classification using texture analysis of ultrasound images. Inf Fusion 2014;19:91–6.
  • [64] Krishnan KR, Sudhakar R. Automatic classification of liver diseases from ultrasound images using GLRLM texture features. Soft computing applications. Springer; 2013. p. 611–24.
  • [65] Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JE, Hong TJ, Sudarshan VK, Vijayananthan A, Yeong CH, Gudigar A. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 2016;79:250–8.
  • [66] Acharya UR, Fujita H, Bhat S, Raghavendra U, Gudigar A, Molinari F, Vijayananthan A, Ng KH. Decision support system for fatty liver disease using gist descriptors extracted from ultrasound images. Inf Fusion 2016;29:32–9.
  • [67] Acharya UR, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor characterization and classification using ultrasound: a new online paradigm. Ovarian neoplasm imaging. Springer; 2013. p. 413–23.
  • [68] Acharya UR, Krishnan MMR, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor characterization using 3D ultrasound. Ovarian neoplasm imaging. Springer; 2013. p. 399–412.
  • [69] Acharya UR, Sree SV, Kulshreshtha S, Molinari F, Koh JEW, Saba L, Suri JS. Gynescan: an improved online paradigm for screening of ovarian cancer via tissue characterization. Technol Cancer Res Treat 2014;13(6):529–39.
  • [70] Khazendar S, Sayasneh A, Al-Assam H, Du H, Kaijser J, Ferrara L, Timmerman D, Jassim S, Bourne T. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator. Facts Views Vis Obgyn 2015;7(1):7.
  • [71] Acharya UR, Molinari F, Sree SV, Swapna G, Saba L, Guerriero S, Suri JS. Ovarian tissue characterization in ultrasound: a review. Technol Cancer Res Treat 2015;14 (3):251–61.
  • [72] Chang C-Y, Chen S-J, Tsai M-F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images. Pattern Recognit 2010;43(10):3494–506.
  • [73] Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. Thyroscreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 2012;107 (2):233–41.
  • [74] Acharya U, Faust O, Sree SV, Molinari F, Garberoglio R, Suri J. Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of thyroscan(tm) algorithms. Technol Cancer Res Treat 2011;10(4):371–80.
  • [75] Acharya UR, Sree SV, Krishnan MMR, Molinari F, Garberoglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of thyroscan(tm) systems. Ultrasonics 2012;52(4):508–20.
  • [76] Kale SD, Punwatkar KM, Pusad Y. Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network. IJCEM Int J Comput Eng Manage 2017;16(6):2283–90.
  • [77] Kale SD, Punwatkar KM. Texture analysis of ultrasound medical images for diagnosis of thyroid nodule using support vector machine. Int J Comput Sci Mobile Comput 2013;2:71–7.
  • [78] Acharya UR, Swapna G, Sree SV, Molinari F, Gupta S, Bardales RH, Witkowska A, Suri JS. A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol Cancer Res Treat 2014;13 (4):289–301.
  • [79] Acharya UR, Faust O, Sree SV, Alvin APC, Krishnamurthi G, Sanches J, Suri JS. AtheromaticTM: symptomatic vs. asymptomatic classification of carotid ultrasound plaque using a combination of HOS, DWT & texture. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2011. p. 4489–92.
  • [80] Acharya UR, Faust O, Alvin A, Krishnamurthi G, Seabra JC, Sanches J, Suri JS. Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. Comput Methods Programs Biomed 2013;110(1):66–75.
  • [81] Wang L, Healey G. Using zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Trans Image Process 1998;7(2):196–203.
  • [82] Guo Y, Zhao G, Pietikä inen M. Texture classification using a linear configuration model based descriptor. BMVC 2011;1–10.
  • [83] Faust O, Yu W, Acharya UR. The role of real-time in biomedical science: a meta-analysis on computational complexity, delay and speedup. Comput Biol Med 2015;58:73–84.
  • [84] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
  • [85] Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85–117.
  • [86] Chandrasekaran B, Mittal S. Deep versus compiled knowledge approaches to diagnostic problem-solving. Int J Man Mach Stud 1983;19(5):425–36.
  • [87] Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev 2016;1(2):207–26.
  • [88] Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D. Radiomics: the process and the challenges. Magnet Reson Imaging 2012;30(9):1234–48.
  • [89] Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar BU, Kikinis R, Haibe-Kains B. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLOS ONE 2014;9 (7):e102107.
  • [90] Ng K, Faust O, Sudarshan V, Chattopadhyay S. Data overloading in medical imaging: emerging issues, challenges and opportunities in efficient data management. J Med Imaging Health Inform 2015;5(4):755–64.
  • [91] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2015;278 (2):563–77.
  • [92] Faust O, Acharya UR, Tamura T. Formal design methods for reliable computer-aided diagnosis: a review. IEEE Rev Biomed Eng 2012;5:15–28.
  • [93] Faust O, Acharya R, Sputh BH, Min LC. Systems engineering principles for the design of biomedical signal processing systems. Comput Methods Programs Biomed 2011;102 (3):267–76.
  • [94] Faust O, Sputh BH, Acharya U, Allen AR. A pervasive design strategy for distributed health care systems. Open Med Imaging J 2008;2:58–69.
  • [95] Song Z, Ji Z, Ma J-G, Sputh B, Acharya UR, Faust O. A systematic approach to embedded biomedical decision making. Comput Methods Programs Biomed 2012;108 (2):656–64.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a813392b-850e-47bd-b24b-bb8acb47d1d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.