Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Advanced magnetic and gravity data analysis has been used to acquire geophysical constraints providing new insights into the geological structure of the Suwałki Anorthosite Massif (SAM). The large negative magnetic anomaly of the SAM anorthosite intrusion is a result of the negative inclination of remanent magnetization, directed antiparallel to the present Earth’s magnetic field. Several filtering processes were applied to the magnetic and gravity maps to better understand the subsurface geology of the SAM area. The geological analysis of residual magnetic and gravity anomaly maps reveals the presence of different rock units, reflecting variation in petrological composition of the crystalline basement rocks. The 2-D modelling of magnetic and gravity data delineate the location and extent of the anorthosite-norite massif. The data is consistent with a thick upper crustal body with density 2690 kg/m3, low susceptibility (0.005 SI) and natural remanent magnetization (1.95 A/m), having inclination of I = –68°, and declination of D = –177°. The rocks bordering the central anorthosite body consist of norite and gabbronorite, granodiorite, diorite and charnockite. These main crystalline basement crustal units are shown more precisely on a new geological map of the SAM.
Czasopismo
Rocznik
Tom
Strony
art. no. 4
Opis fizyczny
Bibliogr. 61 poz., rys., wykr.
Twórcy
autor
- Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
- Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
- 1. Anderson, A.T., 1966. Mineralogy of the Labrieville anorthosite, Quebec. American Mineralogist, 51: 1671-1711.
- 2. Ashwal, L.D., 1993. Proterozoic Massif-Type Anorthosites. In: Anorthosites (ed. L.D. Ashwal): 82-218. Springer, Heidelberg and New York.
- 3. Ates, A., Kearey, P., 1995. A new method for determining magnetization direction from gravity and magnetic anomalies: application to the deep structure of the Worcester Graben. Journal of the Geological Society, 152: 561-566.
- 4. Bagiński, B., 2006. Different ages recorded by zircon and monazite in charnockitic rocks from the Łanowicze borehole (NE Poland). Mineralogia Polonica Special Papers, 29: 79.
- 5. Bagiński, B., Krzemińska, E., 2004. Igneous charnockites and related rocks from the Bilwinowo borehole (NE Poland) - a component of AMCG suite - a geochemical approach. Polish Mineralogical Society Special Publications, 24: 69-72.
- 6. Bagiński, B., Duchesne, J.-C., Vander Auwera, J., Martin, H., Wiszniewska, J., 2001. Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland. Geological Quarterly, 45 (1): 33-52.
- 7. Baranov, V., 1957. A new method for interpretation of aeromagnetic maps: Pseudogravity anomalies. Geophysics, 22: 359-383.
- 8. Baranov, V., Naudy, H., 1964. Numerical calculation of the formula of reduction to the magnetic pole. Geophysics, 29: 67-79.
- 9. Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge.
- 10. Bogdanova, S., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V.I., Taran, L., E.A.P.W. Groups, 2006. EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton. Geological Society Memoirs, 32: 569-625.
- 11. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259: 5-33.
- 12. Brown, L.L., McEnroe, S.A., Peck, W.H., Nilsson, L.P., 2011. Anorthosites as sources of magnetic anomalies. International Association Geomagnetism and Aeronomy Special Sopron Book Series, 1: 321-342.
- 13. Cieśla, E., Wybraniec, S., 1998. Geophysical studies of the Suwałki Anorthosite Massif. Prace Państwowego Instytutu Geologicznego, 161: 27-38.
- 14. Clark, D.A., 1997. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics, 17: 83-103.
- 15. Cymerman, Z., 2014. Structural and kinematic analysis and the Mesoproterozoic tectonic evolution of the Suwałki Massif and its surroundings (NE Poland) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 201: 1-131.
- 16. Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I.S., Stein, H., Brassinnes, S., Ohnenstetter, D., Deloule, E., 2013. A hidden alkaline and carbonatite province of early Carboniferous age in north east Poland: zircon U-Pb and pyrrhotite Re-Os geochronology. Journal of Geology, 121: 91-104.
- 17. Dörr, W., Belka, Z., Marheine, D., Schastok, J., Valverde-Vaquero, P., Wiszniewska, J., 2002. U-Pb and Ar-Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland. Precambrian Research, 119: 101-120.
- 18. Duchesne, J.C., 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation. Mineralium Deposita, 34: 182-198.
- 19. Duchesne, J-C., Herve, M., Bagiński, B., Vander-Auwera, J., Wiszniewska, J., 2010. The origin of the ferroan-potassic A-type granitoids: the case of the hornblende-biotite granite suite of the Mesoproterozoic Mazury Complex, Northeastern Poland. Canadian Mineralogist, 48: 1195-1216.
- 20. Emslie, R.F., 1978. Anorthosite massifs, rapakivi granites, and the late Proterozoic rifting of North America. Precambrian Research, 7: 61-98.
- 21. Emslie, R.F., 1991. Granitoids of rapakivi granite-anorthosite and related associations. Precambrian Research, 51: 173-192.
- 22. Emslie, R.F., Hamilton, M.A., Thériault, R.J., 1994. Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: isotopic and chemical evidence from the Nain Plutonic Suite. Journal of Geology, 102: 539-558.
- 23. Frost, B.R., Lindsley, D.H., Simmons, C., 1989. Penrose Conference report - origin and evolution of anorthosites and related rocks. Geology, 17: 474-475.
- 24. Gawęda, A., Krzemińska, E., Wiszniewska, J., 2009. A-type granites in the Mazury Complex - contribution to world-wide discussion on granite classification (in Polish with English summary). Przegląd Geologiczny, 57: 478-485.
- 25. Grad, M., Jensen, S.L., Keller, G.R., Guterch, A., Thybo, H., Janik, T., Tira, T., Yliniemi, J., Luosto, U., Motuza, G., Nasedkin, V., Czuba, W., Gaczyński, E., Środa, P., Miller, K.C., Wilde-Piórko, M., Komminaho, K., Jacyna, J., Korabliova, L., 2003. Crustal structure of the Trans-European suture zone region along POLONAISE'97 seismic pro file P4. Journal of Geophysical Research, 108: B11, ESE 12, 1-24.
- 26. Hamilton, M.A., McLelland, J., Selleck, B., 2004, SHRIMP U-Pb zircon geochronology of the anorthosite-mangerite-charnockite-granite suite, Adirondack Mountains, New York: ages of emplacement and metamorphism. GSA Memoir, 197: 337-355.
- 27. Heinonen, A., Andersen, T., Rämö, O.T., Whitehouse, M.J., 2015. The source of Proterozoic anorthosite and rapakivi granite magmatism: evidence from combined in situ Hf-O isotopes of zircon in the Ahvenisto complex, southeastern Finland. Journal of the Geological Society, 172: 103-112.
- 28. Juskowiak, O., 1998. Occurrence, structure and mineral diversity of rocks from the Suwałki Anorthosite Massif. Prace Państwowego Instytutu Geologicznego, 161: 67-79.
- 29. Królikowski, C., Petecki, Z., 1995. Gravimetric Atlas of Poland. Polish Geological Institute, Warsaw.
- 30. Królikowski, C., Petecki, Z., Żółtowski, Z., 1998. Main structural units in the Polish part of the East-European Platform in the light of gravimetric data (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 386: 5-58.
- 31. Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I.S., Rosowiecka, O., Taran, L., Johansson, Å., Pécskay, Z., Demaiffe, D., Grabowski, J., Zieliński, G., 2017. Geological Map of Crystalline Basement in the Polish Part of the East European Platform 1:1,000,000. Polish Geological Institute, Warsaw.
- 32. Krzemińska, E., Łukawska, A., Bagiński, B., 2019. U-Pb zircon geochronology of high-grade charnockites - exploration of pre-Mesoproterozoic crust in the Mazury Complex area. Acta Geologica Polonica, 69: 489-511.
- 33. Kubicki, S., Ryka, W., 1982. Geological Atlas of Crystalline Basement in Polish Part of the East-European Platform, 1:500,000. Geological Institute, Warsaw.
- 34. Kubicki, S., Siemiątkowski, J., 1979. Ore mineralization of the Suwałki basic massif (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 316: 5-136.
- 35. Kurbiel, H., Siemiątkowski, J., Subieta, M., 1979. The results of geophysical-geological surveys of the Suwałki region (north-eastern Poland) (in Polish with English summary). Kwartalnik Geologiczny, 23 (1): 87-101.
- 36. Mizeracka, K., Kurbiel, H., 1973. Relation between magnetic properties and rock composition of the Suwałki anorthosite intrusive (in Polish with English summary). Kwartalnik Geologiczny, 17 (4): 683-699.
- 37. Mizeracka, K., Kurbiel, H., 1975. Relation between magnetic properties and mineral composition of rocks from the Suwałki anorthosite massif. Publications of the Institute of Geophysics, Polish Academy of Sciences, 82: 157-169.
- 38. Parecki, A., 1998. Geological structure of the Krzemianka and Udryn deposits. Prace Państwowego Instytutu Geologicznego, 161: 123-136.
- 39. Petecki, Z., 2006. Integrated gravity and magnetic modeling along P4 seismic profile (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 188: 77-87.
- 40. Petecki, Z., Rosowiecka, O., 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. Geological Quarterly, 61 (4): 934-945.
- 41. Podemski, M., 1998. Discovery and exploration of the Suwałki Anorthosite Massif: a case history. Prace Państwowego Instytutu Geologicznego, 161: 7-18.
- 42. Robinson, P., Harrison J.R., McEnroe, S.A., Hargraves, R., 2002. Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization. Nature, 418: 517-520.
- 43. Ryka, W., 1998. Views on the origin of the Suwałki Anorthosite Massif. Prace Państwowego Instytutu Geologicznego, 161: 161-169.
- 44. Ryka, W., Podemski, M. (eds.), 1998. Geology of the Suwałki Anorthosite Massif (northeastern Poland). Prace Państwowego Instytutu Geologicznego, 161.
- 45. Scoates, J.S., Lindsley, D.H., Frost, B.R., 2010. Magmatic and structural evolution of an anotherositic magma chamber: the Poe Mountain intrusion, Laramie anorthosite complex, Wyoming. Canadian Mineralogist, 48: 851-885.
- 46. Skridlaite, G., Wiszniewska, J., Duchesne, J.-C., 2003. Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton. Precambrian Research, 124: 305-326.
- 47. Spector, A., Grant, F.S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35: 293-302.
- 48. Speczik, S., Wiszniewska, J., Diedel, R., 1988. Minerals, exsolution features and geochemistry of Fe-Ti ores of the Suwałki district (North-East Poland). Mineralium Deposita, 23: 200-210.
- 49. Szewczyk, J., 2017. The deep-seated lowland relict permafrost from the Suwałki region (NE Poland) - analysis of conditions of its development and preservation. Geological Quarterly, 61 (4): 845-858.
- 50. Taran, L., 2005. Gabbro-diorite-granodiorite-granite assemblage in Precambrian of NW Belarus. Mineralogical Society of Poland. Special Papers, 26: 85-89.
- 51. Vander Auwera, J., Bolle, O., Bingen, B., Liégeois, J.P., Bogaerts, M., Duchesne, J.C., DeWaele, B., Longhi, J., 2011. Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth-Science Reviews, 107: 375-397.
- 52. Wiszniewska, J., 1998a. Mineralogy of the Fe-Ti-V ores of the Suwałki Anorthosite Massif. Biuletyn Państwowego Instytutu Geologicznego, 161: 137-148.
- 53. Wiszniewska, J., 1998b. Udryn (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 90: 1-150.
- 54. Wiszniewska, J., 2002. Age and genesis of Fe-Ti-V ores and related rocks in the Suwałki Anorthosite Massif (northeastern Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 401: 1-96.
- 55. Wiszniewska, J., Krzemińska, E., 2017. Peraluminous vein granites from the Suwałki Anorthosite Massif and their tectonic significance - evidence from zircon age study by SHRIMP IIe/MC. Mineralogia - Special Papers, 47: 40.
- 56. Wiszniewska, J., Claesson, S., Stein, H.J., Auwera, J.V., Duchesne, J.C., 2002. The NE Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova, 14: 451-460.
- 57. Wiszniewska, J., Kusiak M.A., Krzemińska, E., Dörr, W., Suzuki, K., 2007. Mesoproterozoic AMCG granitoids in the Mazury Complex, NE Poland - a geochronological update. AM Monograph, 1: 31-39.
- 58. Wiszniewska, J., Krzemińska, E., Rosowiecka, O., Petecki, Z., Ruszkowski, M., Salwa, S., 2018. New results of polymetallic, PGE and REE mineralization research in the Suwałki Anorthosite Massif (NE Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 472: 271-284.
- 59. Wiszniewska, J., Petecki Z., Krzemińska, E., Grabarczyk, A., Demaiffe, D., 2020. The Tajno ultramafic alkaline-carbonatite massif, NE Poland: a re view. Geophysics, petrology, geochronology and isotopic signature. Geological Quarterly, 64 (2): 402-421.
- 60. Wybraniec, S., Cieśla, E., Petecki, Z., 1993. Badania geofizyczne obszaru suwalskiego (in Polish). Przewodnik LXIV Zjazdu PTG na Ziemi Suwalskiej: 7-15.
- 61. Znosko, J., 1993. Jak odkryto suwalskie magnetyty (in Polish). Przegląd Geologiczny, 41: 552-558.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a80ff42f-8fbc-450f-bde0-b27dcd2760a6