Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rothe’s fixed-point theorem is applied to prove the interior approximate controllability of a semilinear impulsive strongly damped wave equation with Dirichlet boundary conditions in the space Z1/2 = D((-Δ)1/2) × L2(Ω), where Ω is a bounded domain in Rn (n ≥ 1). Under some conditions we prove the following statement: For all open nonempty subsets ω of Ω the system is approximately controllable on [0, τ]. Moreover, we exhibit a sequence of controls steering the nonlinear system from an initial state z0 to a neighborhood of the final state z1 at time τ > 0.
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--57
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Dpto. de Sistemas de Control, Facultad de Ingeniería, Universidad de Los Andes, Mérida 5101, Venezuela
autor
- Dpto. de Sistemas de Control, Facultad de Ingeniería, Universidad de Los Andes, Mérida 5101, Venezuela
autor
- Department of Mathematics, Missouri State University, Springfield, MO 65897, USA
autor
- Dpto. de Sistemas de Control, Facultad de Ingeniería, Universidad de Los Andes, Mérida 5101, Venezuela
Bibliografia
- [1] D. D. Bainov, V. Lakshmikantham and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientic, Singapore, 1989.
- [2] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. 60, Marcel Dekker, New York, 1980.
- [3] D. Barcenas, H. Leiva and Z. Sivoli, A broad class of evolution equations are approximately controllable, but never exactly controllable, IMA J. Math. Control Inform. 22 (2005), no. 3, 310–320.
- [4] H. Brezis, Análisis Funcional, Teoría y Aplicaciones, Alianza Editorial, Madrid, 1984.
- [5] D. N. Chalishajar, Controllability of impulsive partial neutral funcional differential equation with infinite delay, Int. J. Math. Anal. 5 (2011), no. 8, 369–380.
- [6] L. Chen and G. Li, Approximate controllability of impulsive differential equations with nonlocal conditions, Int. J. Nonlinear Sci. 10 (2010), no. 4, 438–446.
- [7] S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), no. 1, 15–55.
- [8] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems, Lecture Notes in Control and Inform. Sci. 8, Springer, Berlin, 1978.
- [9] R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Texts Appl. Math. 21, Springer, New York, 1995.
- [10] G. Isac, On Rothe’s fixed point theorem in general topological vector space, An. Stiint. Univ. “Ovidius” Constanta 12 (2004), no. 2, 127–134.
- [11] J. Klamka, Approximate controllability of second order dynamical systems, Appl. Math. Comput. Sci. 2 (1992), no. 1, 135–148.
- [12] J. Klamka, Constrained controllability of nonlinear systems, J. Math. Anal. Appl. 201 (1996), no. 2, 365–374.
- [13] J. Klamka, Constrained approximate boundary controllability, IEEE Trans. Automat. Control 42 (1997), no. 2, 280–284.
- [14] J. Klamka, Controllability of second order semilinear infinite-dimensional dynamical systems, Appl. Math. Comput. Sci. 8 (1998), no. 3, 459–470.
- [15] J. Klamka, Constrained approximate controllability, IEEE Trans. Automat. Control 9 (2000), 1745–1749.
- [16] J. Klamka, Schauder’s fixed-point theorem in nonlinear controllability problems, Control Cybernet. 29 (2000), no. 1, 153–165.
- [17] J. Klamka, Constrained controllability of semilinear systems, Nonlinear Anal. 47 (2001), 2939–2949.
- [18] J. Klamka, Constrained exact controllability of semilinear systems, Systems Control Lett. 4 (2002), no. 2, 139–147.
- [19] H. Larez, H. Leiva and J. Rebaza, Approximate controllability of a damped wave equation, Can. Appl. Math. Q. 20 (2012), 405–419.
- [20] H. Leiva, A lemma on C0-semigroups and applications, Quaest. Math. 26 (2003), 247–265.
- [21] H. Leiva, N. Merentes and J. Sanchez, Interior controllability of the Benjamin-Bona-Mahony equation, J. Math. Appl. 33 (2010), 51–59.
- [22] H. Leiva, N. Merentes and J. L. Sanchez Approximate controllability of semilinear reaction diffusion, Math. Control Relat. Fields 2 (2012), no. 2, 171–182.
- [23] H. Leiva, N. Merentes and J. Sanchez, A characterization of semilinear dense range operators and applications, Abstr. Appl. Anal. 2013 (2013), Article ID 729093.
- [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [25] N. A. Perestyuk and A. M. Samoilenko, Impulsive Differential Equations, World Scientic, Singapore, 1995.
- [26] M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc. 95 (1960), 81–91.
- [27] B. Radhakrishnan and K. Balachandran, Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions, J. Control Theory Appl. 10 (2012), no. 1, 28–34.
- [28] S. Selvi and M. Mallika Arjunan, Controllability results for impulsive differential systems with finite delay, J. Nonlinear Sci. Appl. 5 (2012), 206–219.
- [29] J. D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a80dfc86-085f-43d9-b52b-60c14032003c