PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive Processing of Basalt together with Magnetite Concentrate in Order to Obtain Ferrous Alloy and Calcium Carbide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is devoted to basalt reprocessing together with magnetite concentrate in order to obtain ferrous alloy and calcium carbide. The studies have been based on thermodynamic simulation and electric smelting in arc furnace. The thermodynamic simulation has been performed using HSC-5.1 software based on the principle of minimum Gibbs energy. The blend was smelted in arc furnaces. On the basis of the obtained results of combined processing of basalt, it has been established that under equilibrium conditions, the increase in carbon content from 36 to 42 wt % of basalt and concentrate mixture makes it possible to increase the aluminum extraction into the alloy up to 81.4%, calcium into calcium carbide – up to 51.4%, and silicon into the alloy – up to 78.5% [...]
Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 55 poz., fot., rys., tab., wykresy
Twórcy
autor
  • M. Auezov South Kazakhstan State University, Kazakhstan
  • M. Auezov South Kazakhstan State University, Kazakhstan
  • M. Auezov South Kazakhstan State University, Kazakhstan
autor
  • M. Auezov South Kazakhstan State University, Kazakhstan
autor
  • M. Auezov South Kazakhstan State University, Kazakhstan
Bibliografia
  • [1] Baibatsha, A.B. (2008). Geologiya mestorozhdenii poleznykh iskopaemykh [Geology of mineral deposits]. Almaty: KazNTU.
  • [2] Godfrey Fitton, J. (2020). Basalt and Related Rocks. Reference Module in Earth Systems and Environmental Sciences. DOI: 10.1016/B978-0-12-409548-9.12410-8.
  • [3] Ponomarev, V.B. & Rapoport, A.T. (2012). Bazal'tovye i bazal'toplastikovye materialy dlya stroitel'stva [Basalt and basal plastic materials for construction]. Bazal'tovye tekhnologii [Basalt technologies]. 1, 29-35.
  • [4] Sivanandhini, K., Subasree, S., Preethika, R. & Meenakshi, M. (2019). Experimental Study on using Basalt as a Construction Material. SSRG International Journal of Civil Engineering. 6(4), 11-12.
  • [5] Pisarenko, M.V. & Patrakov, Yu. F. (2017). Integrated development of deposits in the Barzas geological and economic region. Mining Industry. 2(132), 31-35.
  • [6] Ignatova, A.M. (2012). Sinteticheskie mineral'nye splavy, poluchennye kamennym lit'em, – material nastoyashchego i budushchego [Synthetic mineral alloys produced by stone casting]. Bazal'tovye tekhnologii [Basalt technologies]. 1, 46-49.
  • [7] Fomichev, S.V. Babievskaya, I.Z., Dergacheva, N.P., Noskova, O.A. & Krenev, V.A. (2010). Evaluation and modification of the initial composition of gabbro - basalt rocks for mineral - fiber fabrication and stone casting. Inorganic Materials. 46(10), 1121-1125.
  • [8] Gutnikov, S.I. & Lazoryak, B.I. (2019). Effect of Nozzle Diameter on Basalt Continuous Fiber Properties. Fibers. 7(7), 65. DOI: 10.3390/FIB7070065.
  • [9] Dahl, T., Clausen, A. & Hansen, P. (2011). The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products. International Geology Review. 53, 894-904.
  • [10] Gurev, V.V. & Svetlyakov, M.V. (2011). Teplozvukoizolyatsionnye materialy iz bazal'tovykh volokon, ikh osobennosti i fizikomekhanicheskie svoistva [Heat and sound insulating materials from basalt fibers, their peculiarities and physicochemical properties]. Vestnik MGSU. 3-2, 128-133.
  • [11] Ponomarev, V.B. & Rapoport, A.T. (2013). Effektivnost' primeneniya bazal'tovogo nepreryvnogo volokna dlya proizvodstva trub iz polimernykh kompozitov [Efficiency of basalt continuous fibers for fabrication of polymer composite pipes]. Bazal'tovye tekhnologii [Basalt technologies]. 2, 38-42.
  • [12] Vasileva, A.A. & Pavlova, M.S. (2019). Poluchenie bazal'tovogo nepreryvnogo volokna na osnove bazal'ta Vasil'evskogo mestorozhdeniya [Fabrication of basalt continuous fibers based on basalt of Vaslievskoe deposit]. Tekhnika i tekhnologiya silikatov [Technique and technology of silicates]. 26(4), 111-114.
  • [13] Demeshkin, A.G. & Shvab, A.A. (2011). Eksperimental'noe issledovanie mekhanicheskikh svoistv nepreryvnogo bazal'tovogo volokna primenitel'no k proizvodstvu kompozitnykh materialov [Experimental studies of mechanical properties of continuous basalt fibers regarding fabrication of composite materials]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Series: Physical and mathematical sciences. 3(24), 185-188.
  • [14] Korobkin, V.V., Samatov, I.B., Slyusarev, A.P., Tulemisova, Zh.S. (2017). Mineral raw materials of Kazakhstan as a basis for establishment of production mineral basalt wool and fibers. Vestnik KRSU. 17(1), 127-131.
  • [15] Dalinkevich, A.A., Gumargalieva, K.Z., Marakhovsky, S.S. & Soukhanov, A.V. (2009). Modern Basalt Fibrous Materials and Basalt Fiber – Based Polymeric Composites. Journal of Natural Fibers. 6(3), 248-271.
  • [16] Gulamova, D.D., Shevchenko, V.P., Tokunov, S.G. & Kim, R.B. (2012). Use of solar power for the production of basalt - based mineral fibers. Applied Solar Energy. 48(1), 58-59.
  • [17] Ivanitskii, S.G. & Gorbachev, G.F. Continuous basalt fibers: production aspects and simulation of forming processes. I. State of the art in continuous basalt fiber technologies. Powder Metallurgy and Metal Ceramics. 50, 125-129.
  • [18] Pisciotta, A., Perevozchikov, B.V., Osovetsky, B.M., Menshikova, E.A. & Kazymov, K.P. (2015). Quality Assessment of Melanocratic Basalt for Mineral Fiber Product, Southern Urals, Russia. Natural Resources Research. 24(3), 329-337.
  • [19] Novitskii, A. & Efremov, M. (2013). Technological aspects of the suitability of rocks from different deposits for the production of continuous basalt fiber. Glass and Ceramics. 69.
  • [20] Sanjaasuren, R., Erdenebat, Ts., Rumyantsev, P.F. (2007). Theoretical evaluation of possibility on use basalts as alumosilicate component in raw mix for synthesis of Portland cement clinker. Conference: The 12 th International Congress on the Chemistry of Cement, At Montreal, Canada, July.
  • [21] Abd El-Hafiz, N.A., Abd El-Moghny, M.W., El-Desoky, H. M. & Afifi, A.A. (2015). Characterization and technological behavior of basalt raw materials for Portland cement clinker production. IJISET - International Journal of Innovative Science, Engineering & Technology. 2(7).
  • [22] Mendes, T.M., Guerra, L. & Morales, G. (2016). Basalt waste added to Portland cement. Acta Scientiarum. Technology. 38(4), 431-436. DOI: 10.4025/actascitechnol. v38i4.27290.
  • [23] Nguen, V.K. & Chumakov, L.D. (2009). Kompleksnoe ispol'zovanie bazal'tovykh zapolnitelei v betone [Integrated use of basalt fillers in concrete]. Vestnik MGSU. 1, 164-167.
  • [24] Miichenko, I.P. (2010). Napolniteli dlya polimernykh materialov [Fillers for polymer materials]. Moscow: RGTU im. K.E.Tsiolkovskogo.
  • [25] Sharifullin, F.S. (2015). Primenenie bazal'ta v kachestve napolnitelya dlya lakokrasochnogo materiala [Basalt as a filler for coating materials]. Vestnik Kazanskogo tekhnologicheskogo universiteta. 18(15), 95-97.
  • [26] Ikkurthi, S., Mounika, L., Prasad, C. & Krishna, B. (2015). Experimental study on the use of basalt aggregate in concrete mixes. International Journal of Civil Engineering. 2(4), 37-40.
  • [27] Engidasew, T.A. & Barbieri, G. (2014). Geo-engineering evaluation of Termaber basalt rock mass for crushed stone aggregate and building stone from Central Ethiopia. Journal of African Earth Sciences. 99(2), 581-594. DOI: 10.1016/j.jafrearsci.2013.11.020.
  • [28] Chaohe, Ch., Guangfan, L., Qizhong, Sh. & Bifeng, J. (2014). Retain of fine dispersed basalt fiber reinforcement in cement matrix. Applied Mechanics and Materials. 584-586, 1691-1694. DOI: 10.4028/www.scientific.net/AMM.584-586.1691.
  • [29] Vinotha, J. & Brindha, D. (2020). Influence of basalt fibers in the mechanical behavior of concrete -A review. Structural Concrete. DOI: 10.1002/suco.201900086.
  • [30] Pirmohammad, S., Amani, B. & Majd Shokorlou, Y. (2020). The effect of basalt fibres on fracture toughness of asphalt mixture. Fatigue & Fracture of Engineering Materials & Structures. 43(7), 1446-1460. DOI: 10.1111/ffe.13207.
  • [31] Matykiewicza, D., Barczewskia, M., Knapskia, K. & Skórczewskab, D. (2017). Hybrid effects of basalt fibers and basalt powder on thermomechanical properties of epoxy composites. Composites Part B: Engineering. 125, 157-164. DOI: 10.1016/J.COMPOSITESB.2017.05.060.
  • [32] Dobiszewska, M., Pichor, W. & Szoldra, P. (2019). Effect of basalt powder addition on properties of mortar. MATEC Web
  • of Conferences. Krynica 2018. 262, 06002. DOI: 10.1051/matecconf/201926206002.
  • [33] Fomichev, S.V., Dergacheva, N.P., Babievskaya, I.Z., Noskova, O.A. & Krenev, V.A. (2013). Use of highly dispersed basalt powder for manufacturing stone ceramics. Theoretical Foundations of Chemical Engineering, 47, 626-628. DOI: 10.1134/S0040579513050023.
  • [34] Fomichev, S.V., Dergacheva, N.P., Steblevskii, A.V. & Krenev, V.A. (2011). Production of ceramic materials by the sintering of ground basalt. Theoretical Foundations of Chemical Engineering, 45(4), 526-529. DOI: 10.1134/S0040579510051124.
  • [35] Dzhigiris, D.D., Makhova, M.F. (2002). Osnovy proizvodstva bazal'tovykh volokon i izdelii [Frication fundamentals of basalt fibers and items]. Moscow: Teploenergetik.
  • [36] Kostikov, V.I., Smirnov, L.N. (2001). Bazal'tovoloknistye materialy [Basalt fibrous materials]. Collection of articles. Moscow: Informkonversiya.
  • [37] Abdurakhmanov, S.A., Rashidova, R., Mamatkarimova, B. & Sattarov, L.K. (2015). About basalt production and ways to improve basalt product quality. RMZ-materials and geoenvironment. 62(2), 133-139.
  • [38] Drobot, N.F., Noskova, O.A., Steblevskii, A.V., Fomichev, S.V. & Krenev, K.A. (2013). Use of chemical and metallurgical methods for processing of gabbro - basalt raw material. Theoretical Foundations of Chemical Engineering. 47(4), 484-488. DOI: 10.1134/S004057951304 0052.
  • [39] Baisanov, S.O., Tolymbekov, M.Zh., Zharmenov, A.A., Chekimbaev, A.F. & Terlikbaeva, Zh. (2008). Using clay rock in smelting ferrosilicoaluminum. Steel in Translation. 38(8), 668-670.
  • [40] Shevko, V.M., Karatayeva, G.E., Amanov, D.D., Badikova, A.D., Bitanova, G.A. (2019). Joint Production of Calcium Carbide and A Ferroalloy of The Daubaba Deposit Basalt. International Journal of Mechanical Engineering and Technology (IJMET). 10(2), 1187-1197.
  • [41] Shevko, V.M., Badikova, A.D., Karataeva, G.E. & Tuleev, M. A. (2019). Extraction Kinetics of Silicon, Aluminum, and Calcium from Dubersay Basalt by Electric Smelting. International Journal of Engineering and Advanced Technology. 8, 4566-4570.
  • [42] Shevko, V. M., Karataeva, G. E., Badikova, A. D., Amanov, D. D. & Tuleev, M. A. (2018). Termodinamicheskaya model' vliyaniya temperatury i ugleroda na poluchenie ferrosplava i karbida kal'tsiya iz bazal'ta mestorozhdeniya Dubersai [Thermodynamic model of temperature and carbon effect on production of ferrous alloy and calcium carbide from Dubersai basalt]. Kompleksnoe ispol'zovanie mineral'nogo syr'ya. 3, 86-94.
  • [43] Shevko, V.M., Zharmenov, A., Aitkulov, D.K., Terlikbaeva, A., Badikova, A.D. & Karataeva, G.E. (2019). Elektrotermicheskoe poluchenie ferrosplava i karbida kal'tsiya iz domennogo shlaka [Electrochemical production of ferrous alloy and calcium carbide from blast furnace slag]. Promyshlennost' Kazakhstana. 2, 81-85.
  • [44] Roine, A., Jarkko-Mansikka-aho, Kotiranta, T., Bjorklund, P., Lamberg, P. (August 14, 2006). HSC Chemistry 6.0 User's Guide. Outotec Research Oy.
  • [45] Steel chips, price. MetalTorg.Ru Information agency. News, analytics, market statistics of ferrous, non-ferrous, and precious metals. Retrieved June 28, 2020, from https://www.metaltorg.ru/stalnaya-struzhka-tsena.htm
  • [46] Products of Iron Concentrate Company. Iron Concentrate Company. Retrieved June 28, 2020, from http://icckaz.com/ru/node/39
  • [47] Shevko, V.M., Serzhanov, G.M., Karataeva, G.E., Amanov, D.D. (2019). Computation of equilibrium distribution of elements with regard to HSC-5.1 software. Computer program. RK Certificate №1501.
  • [48] Shevko, V.M., Amanov, D.D., Karataeva, G.E. & Aitkulov, D.K. (2016). Kinetika polucheniya kompleksnogo ferrosplava iz kremnii-alyuminiisoderzhashchei opoki [Kinetics of production of integrated ferrous alloy from silicon and aluminum containing mold frame]. Mezhdunarodnyi zhurnal prikladnykh i fundamental'nykh issledovanii. 10-2, 194-196.
  • [49] Kozlov, K.B., Lavrov, B.A. (2011). Poluchenie karbida kal'tsiya v dugovoi pechi i ego analiz [Production of calcium carbide in arc furnace and its analysis]. St. Petersburg: State Technological Institute.
  • [50] State standard GOST 1460-2013. Calcium carbide. Specifications. (2014). Moscow: Standartinform.
  • [51] Ahmad, Z., Yasin, M., Nadeem, S. & Manzoor Atta, B. (2003). Effect of Application of Calcium Carbide on Growth of Cotton Crop. Asian Journal of Plant Sciences. 2, 569-574.
  • [52] Thompson, R. B. (1996). Using calcium carbide with the acetylene inhibition technique to measure denitrification from a sprinkler irrigated vegetable crop. Plant Soil. 179, 9-16.
  • [53] Podzolic soils. Big Encyclopedic Dictionary. Agriculture. Retrieved June 28, 2020, from http://www.cnshb.ru/ AKDiL/0024/base/RP/003410.shtm
  • [54] Makarenko, L.N. (1996). Primenenie pod ogurtsy karbida kal'tsiya [Calcium carbide for cucumbers]. Izvestiya TSKhA. 3, 111-114.
  • [55] Specifications TU 0820-011-14513884-2013. Aluminum ferrosilicon. (2013). Ekaterinburg: UIS.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8091191-b7cb-4121-b990-bac91d04cf1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.