PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of information on sleep apnoea contained in two symmetric EEG recordings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electroencephalogram (EEG) is one of biomedical signals measured during all-night polysomnography to diagnose sleep disorders, including sleep apnoea. Usually two central EEG channels (C3-A2 and C4-A1) are recorded, but typically only one of them are used. The purpose of this work was to compare discriminative features characterizing normal breathing, as well as obstructive and central sleep apneas derived from these central EEG channels. The same methodology of feature extraction and selection was applied separately for the both synchronous signals. The features were extracted by combined discrete wavelet and Hilbert transforms. Afterwards, the statistical indexes were calculated and the features were selected using the analysis of variance and multivariate regression. According to the obtained results, there is a partial difference in information contained in the EEG signals carried by C3-A2 and C4-A1 EEG channels, so data from the both channels should be preferably used together for automatic sleep apnoea detection and differentiation.
Rocznik
Strony
229--239
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wzory
Twórcy
  • Wrocław University of Science and Technology, Faculty of Electronics, B. Prusa 53/55, 50-317 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronics, B. Prusa 53/55, 50-317 Wrocław, Poland
Bibliografia
  • [1] Anonymous. (2001). International classification of sleep disorders, revised: Diagnostic and coding manual. Chicago, IL: American Academy of Sleep Medicine.
  • [2] Zhou, J., Wu, X.M., Zeng, W.J. (2015). Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine. Journal of Clinical Monitoring and Computing, 29(6), 767-772.
  • [3] Nitkiewicz, S., Barański, R., Kukwa, A., Zając, A. (2018). Respiratory disorders - measuring method and equipment. Metrol. Meas. Syst., 25(1), 187-202.
  • [4] Kleitman, N., Asernisky, E. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118(3062), 273-274.
  • [5] Prucnal, M., Polak, A.G. (2017). Effect of feature extraction on automatic sleep stage classification by the artificial neural network. Metrol. Meas. Syst., 24(2), 229-240.
  • [6] Chokroverty, S., Thomas, R., Bhatt, M. (2014). Atlas of Sleep Medicine. Philadelphia: Elsevier Saunders.
  • [7] Walsleben, J.A., O’Malley, E.B., Bonnet, K., Norman, R.G., Rapoport, D.M. (1993). The utility of topographic EEG mapping in obstructive sleep apnea syndrome. Sleep, 16(8), S76-S78.
  • [8] Bandla, H., Gozal, D. (2000). Dynamic changes in EEG spectra during obstructive apnea in children. Pediatric pulmonology, 29, 359-365.
  • [9] Dingli, K., Assimakopoulos, T., Fietze, I., Witt, C., Wraith, P.K., Douglas, N.J. (2002). Electroencephalographic spectral analysis: detection of cortical activity changes in sleep apnoea patients. European Respiratory Journal, 20, 1246-1253.
  • [10] Halász, P., Terzano, M., Parrino, L., Bódizs, R. (2004). The nature of arousal in sleep. Journal of Sleep Research, 13(1), 1-23.
  • [11] Coito, A.L., Sanches, J. (2011). Assessment of Obstructive Sleep Apnea Syndrome by spectral analysis of physiological parameters. 1st Portuguese Meeting in Bioengineering, IEEE, Lisbon, 1-6.
  • [12] Eckert, D.J., Younes, M.K. (2014). Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. Journal of Applied Physiology, 116(3), 302-313.
  • [13] Cohen, M.X. (2014). Analyzing neural time series data: theory and practice. Massachusetts, MIT Press.
  • [14] Jones, S.G., Riedner, B.A., Smith, R.F., Ferrarelli, F., Tononi, G., Davidson, R.J., Benca, R.M. (2014). Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study. Sleep, 37(2), 399-407.
  • [15] Luecken, L.J., Gallo, L.C. (2008). Handbook of Physiological Research Methods in Health Psychology. Los Angeles: SAGE Publications.
  • [16] Mattice, C., Brooks, R., Lee-Chiong, T. (2012). Fundamentals of Sleep Technology. Philadelphia: Lippincott Williams & Wilkins.
  • [17] Puskás, S., Kozák, N., Sulina, D., Csiba, L., Magyar, M.T. (2017). Quantitative EEG in obstructive sleep apnea syndrome: a review of the literature. Reviews in the Neurosciences, 28(3), 265-270.
  • [18] Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23), 215-220.
  • [19] Gosavi, P.B., Singh, R. (2017). Automatic sleep apnea detection based on entropy of multi-band EEG signal mechanism. 7th International Conference on Recent Trends in Engineering, Science and Management, Pune, 728-735.
  • [20] Sezgin, N., Tagluk, M.E. (2009). Energy based feature extraction for classification of sleep apneasyndrome. Computers in Biology and Medicine, 39(11), 1043-1050.
  • [21] Tagluk, M.E., Sezgin, N. (2011). A new approach for estimation of obstructive sleep apnea syndrome. Expert Systems with Applications, 38(5), 5346-5351.
  • [22] Shahnaz, C., Minhaz, A.T., Ahamed, S.T. (2016). Sub-frame based apnea detection exploiting delta band power ratio extracted from EEG signals. IEEE Region 10 Conference (TENCON), Marina Bay Sands, 190-193.
  • [23] Pereda, E., Gamundi, A., Nicolau, M.C., Rial, R., González, J. (1999). Interhemispheric differences in awake and sleep human EEG: a comparison between non-linear and spectral measures. Neuroscience Letters, 263(1), 37-40.
  • [24] Roth, C., Achermann, P., Borbely A.A. (1999). Frequency and state specific hemispheric asymmetries in the human sleep EEG. Neuroscience letters, 271(3), 139-142.
  • [25] Sekimoto, M., Kato, M., Kajimura, N., Watanabe, T., Takahashi, K., Okuma, T. (2000). Asymmetric interhemispheric delta waves during all-night sleep in humans. Clinical Neurophysiology, 111(5), 924-928.
  • [26] Casagrande, M., Bertini, M. (2007). Night-time right hemisphere superiority and daytime left hemi-sphere superiority: A repatterning of laterality across wake-sleep-wake states. Biological psychology, 77(3), 337-342.
  • [27] Swarnkar, V., Abeyratne, U.R. (2006). Statistical analysis of EEG arousals in sleep apnea syndrome. Proc. 24th IASTED International Conference on Biomedical Engineering (BioMED 2006), Innsbruck, 282-287.
  • [28] Rial, R., Gonzalez, J., Gene, L., Akaarir, M., Esteban, S., Gamundi, A., Barcelo, P., Nicolau, C. (2013). Asymmetric sleep in apneic human patients. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(3), 232-237.
  • [29] Prucnal, M.A., Polak, A.G. (2018). Analysis of features extracted from EEG epochs by discrete wavelet decomposition and Hilbert transform for sleep apnea detection. Proc. 40th Annual International Conference of the IEEE EMBC 2018, Honolulu, 287-290.
  • [30] Jung, D.W., Hwang, S.H., Lee, Y.J., Jeong, D.U., Park, K.S. (2016). Apnea-hypopnea index estimation using quantitative analysis of sleep macrostructure. Physiological Measurement, 37(4), 554-563.
  • [31] Sundararajan, D. (2015). Discrete Wavelet Transform: A Signal Processing Approach. Singapore: Wiley.
  • [32] Lin, R., Lee, R.G., Tseng, C.L., Zhou, H.K., Chao, C.F., Jiang, J.A. (2006). A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks. Biomedical Engineering: Applications, Basis and Communications, 18(3), 138-143.
  • [33] Gandhi, T., Panigrahi, B.K., Anand, S. (2011). A comparative study of wavelet families for EEG signal classification. Neurocomputing, 74(17), 3051-3057.
  • [34] Poularikas, A.D. (1999). Formulas and Tables for Signal Processing. Boca Raton: CRC Press LLC.
  • [35] Hsu, M.-K., Sheu, J.-C., Hsue, C. (2011). Overcoming the negative frequencies - instantaneous frequency and amplitude estimation using osculating circle method. Journal of Marine Science and Technology, 19(5), 514-521.
  • [36] Guyon, I., Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(3), 1157-1182.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a804b586-97aa-4eb1-9179-ae3b83b5ba3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.