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Abstract
The paper concerns effort estimation of software development projects, in particular, at the
level of product delivery stages. It proposes a new approach to model project data to support
expert-supervised analogy-based effort estimation. The data is modeled using Semantic Web
technologies, such as Resource Description Framework (RDF) and Ontology Language for the
Web (OWL). Moreover, in the paper, we define a method of supervised case-based reasoning. The
method enables to search for similar projects’ tasks at different levels of abstraction. For instance,
instead of searching for a task performed by a specific person, one could look for tasks performed
by people with similar capabilities. The proposed method relies on ontology that defines the core
concepts and relationships. However, it is possible to introduce new classes and relationships,
without the need of altering the search mechanisms. Finally, we implemented a prototype tool that
was used to preliminary validate the proposed approach. We observed that the proposed approach
could potentially help experts in estimating non-trivial tasks that are often underestimated.

1. Introduction

Accurate effort estimate is invaluable at every
stage of software development. At early stages, it
helps to assess feasibility of a project and negoti-
ate the contract, whereas during product delivery
stages, it helps to establish achievable deadlines
and to reasonably allocate project resources.

Unfortunately, the unique nature of effort
estimation at different stages of software devel-
opment makes it difficult to establish a single,
coherent method of collecting data for the pur-
pose of effort prediction. The main reason of that
is because the required level of details visibly dif-
fers between the levels of tasks. At the level of
software development project we usually collect
some of its general properties. For instance, in
the ISBSG database [1] one can find information
such as customer’s domain, type of application,
level of programming language, etc. This data
is usually sufficient to identify and indicate the
values of so-called cost drivers used in most of

the model-based effort estimation methods (e.g.,
a well-known COCOMO II [2] defines 22 such
factors—17 cost-drivers and 5 scale-drivers) or
to use analogy-based methods such as ACE [3],
ANGEL [4], Estor [5]. However, such general
data becomes less usable if one would like to
estimate smaller tasks performed within short
development cycles advocated by agile software
development methods, like Scrum [6] or eXtreme
Programming [7]. This is mainly because the con-
texts of such small tasks are more diverse, what
makes definition of a universal set of cost drivers
a cumbersome task. For instance, let us consider
how contextually different could be these two
tasks: conducting a meeting with a customer and
implementing a login function in a web applica-
tion.

This at least partially explains why estima-
tion of low-level tasks is usually performed with
the use of expert-judgment methods (e.g., group
methods such as Planning Poker [8–11]) and why
there are almost no model-based methods to es-
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timate effort of such tasks. However, it is impor-
tant to mention that the expert-based judgment
methods are far from being perfect, because they
frequently involve a high degree of wishful think-
ing and inconsistency. In addition, their results
could be biased by business pressure [12,13]. Ac-
cording to Jørgensen [12] the organizations that
have had the most success at meeting cost and
schedule commitments use a mix of model-based
and expert-judgment methods.

Therefore, the question arises whether it is
possible to collect and store project data in such a
way that it would enable to combine expert-based
and model-based methods of project tasks esti-
mation.

In the paper, we address this question by
proposing a new approach to model information
regarding projects tasks. Our ultimate goal is
to combine expert-based and analogy-based ef-
fort estimation methods. The proposed approach
is based on Semantic Web technologies, such
as Resource Description Framework (RDF) and
Ontology Language for the Web (OWL) and has
the following features:
– it enables to model and store information

regarding project tasks and allows to dynami-
cally extend the ontology by introducing new
concepts and relationships (Section 2),

– it supports supervised case-based
reasoning—allows to dynamically change the
abstraction level of search criteria (Section 3),

– it can be potentially applied to support
expert-based effort estimation at the level
of product delivery stage (Section 4).

2. Modeling Projects Tasks

Semantic Web technologies in their simplest form
offer means to express and store facts in the
form of triples (subject, predicate, object) using
Resource Description Framework (RDF). Each
piece of information is uniquely identified by its
Uniform Resource Identifier (URI). This repre-
sentation of information can be augmented with
ontologies expressed in one of the variants of

Ontology Language for the Web (OWL). It is
also possible to use reasoners and rules engines.

The ontology forms an information domain
model. It uses a predefined, reserved vocabulary
of terms to define concepts and the relationships
between them for a specific area of interest, or
domain [14]. Although ontologies are developed
and studied for many years, we have recently
observed rapid evolution of technologies that
support ontology modeling.

An example of a simple knowledge base in a
form of semantic network is presented in Figure 1.
It states that there are two individuals: John and
Simon. Each of them is uniquely identified by its
URI, e.g., my_data:John1. Both John and Simon
belong to the class my_onto:Person (Person has
a type of owl:Class). Because they are people,
they have property my_onto:hasName, which
represents person’s name. In addition, there is a
relationship between both of them stating that
John knows Simon.

The great advantage of using Semantic Web
technologies to store information is that the data
model can be easily extended. It is easy to in-
troduce new individuals, classes, properties and
constraints—usually, without the need of modi-
fying the source code of a computer program.

2.1. Projects Tasks Ontology

Assuming that the contexts can differ visibly
between project tasks, we would like to propose
an ontology that defines the most important
concepts and relationships to enable modeling
project tasks for the purpose of effort estima-
tion. We also assume that the ontology can be
extended by definitions of new classes and re-
lationships that are characteristic for a specific
context.

The proposed knowledge model will focus on
modeling five types of facts regarding project
task:
– Who? — it represents information about

the one that performed the task. It could be
either an individual or a group of people.

1 We are going to omit the namespace part of URI (e.g., my_data:) unless there is a collision between names.
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Figure 1. An example of knowledge representation in RDF and OWL (¬ an individual that belongs to the
class Person; ­ a data property stating that John has a name John Smith; ® Person is an OWL class; ¯ an

object property stating that John knows Simon).

– Did what? — it corresponds to both the
type of activity and inputs / outputs of the
task.

– How? — it regards any tools, methods, tech-
nologies that were used to complete the task.

– When? — it relates to the actual effort and
timespan of the task completion.
An exemplary knowledge base storing infor-

mation about a project task called Task1 is pre-
sented in Figure 2. It shows the usage of classes
(ellipses with dashed lines) and relationships de-
fined in the proposed ontology. A project task
is represented by an individual that belongs to
the class Task. Each task can have a number of
properties corresponding to the aforementioned
questions—Who?, Did what?, How? and When?:
– hasPerformer — it relates to individuals be-

longing to the class Performer (or its sub-
classes) that were involved in the comple-
tion of the task. Performers can have dif-
ferent capabilities indicated by the property
hasCapability. A capability has its level and
the property in referring to the subject the
capability concerns. In the example, Task1
was performed by John Smith, who is highly
skilled Java developer.

– hasInput — this property describes all the
prerequisites of the task, e.g., requirements,
constraints. In the example, Task1 has a sin-
gle input. It is a use case (UC1) describing
user functional requirements to be imple-
mented. We do not restrict the types of inputs
to any classes. However, an input can poses a
property hasSize that is recognized and inter-
preted by the case-based reasoning algorithm.
For instance, the size of the use case UC1
is expressed using the number-of-steps mea-
sure. We would also like to emphasize that

the presented ontology could be dynamically
extended or merged with existing domain
ontologies to precisely model the inputs. For
instance, UC1 belongs to the class Creation
Use Case that is not a part of the proposed
ontology, however, it still can be used to sup-
port effort estimation.

– hasType — it represents the type of activity
being performed. The taxonomy of types has
a hierarchical structure.

– hasMeans — the property determines all the
means that were used to complete the task.
In the example, Java was used to implement
UC1.

– hasOutput — it represents the artifacts that
need to be produced.

– hasSource — it provides information about
the entity that proposed the task. For in-
stance, it could be a person or company.

– actualEffortInHours and estimatedEffortIn-
Hours — the properties correspond to the
actual effort of the tasks, and if available, its
estimated effort.

– from and to — properties defining a timespan
when the task was performed.
Tasks can be composed into hierarchies using

the subTaskOf relationship. This relationship
is transitive, which means that if a task has
sub-tasks defined, it automatically poses all their
features. For instance, in the showed example,
Task1 is a sub-task of Task2. This means that
Task2 poses all the properties of Task1. For in-
stance, one could conclude that John Smith also
participated in completion of Task2. In addition,
one of the goals of Task2 was to implement UC1.
The composition of tasks enables to compare
tasks at different levels.
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Figure 2. An example of project-task model using the proposed ontology.

3. Supervised Case-based Reasoning

In order to perform case-based reasoning using
the proposed ontology we need a method to nav-
igate through semantic network. As the individ-
uals in the ontology form a complicated graph of
relationships, we decided to introduce x-level no-
tation to indicate the depth of graph exploration.
For instance, 1-level of navigation means that
the exploration starts at the given node (RDF
resource or OWL class) and finishes at the node’s
direct neighbors. The 2-level navigation implies
traversing through all nodes available on 1-level
and recursive invocation of 1-level navigation for
each of them.

The main goal of the proposed case-based
reasoning method is to give the expert possibil-
ity to dynamically adjust the demanded level of
similarity between tasks. We defined five levels
of similarity:
– Near-exact similarity — only tasks which

have exactly the same values of all properties
at 1-level would be classified as similar. For
instance, if two tasks are being compared that

have almost the same values of all properties,
but the sets of performers are different, then,
these tasks will not meet conditions to classify
them as similar.

– Similarity after generalization to a given class
— generalization can be defined as navigating
up in the hierarchical taxonomy of classes.
If two tasks were connected to individuals
belonging to the same, given class, then these
two tasks would be classified as similar. For
instance, let us assume that there are two
tasks: the first one was implemented in Java
and the second one was implemented in C#.
If one considers their similarity after gener-
alizing them to the class 3GL programming
language, then the tasks would be considered
similar.

– Similarity after generalization to classes on
a given level — this approach is more gen-
eral than the generalization to a given class,
because the process of navigating up in class
hierarchy is not based on a single class, but
it is performed for all classes on a given level.
For instance, if a task has individuals that
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directly belong to both 3GL programming
language and Web Framework classes, a sim-
ilar task will also have to be connected to
individuals that belong to these classes.

– Similarity when values of a given property
are equal — tasks in the project ontology
are not only connected with individuals, but
also with plain values. Generalizations work
only for class instances, so there is a need to
introduce a mechanism of comparing tasks
based on so-called datatype properties (e.g.,
integers, strings, etc.). Tasks are considered
similar if they have the same values of a given
property.

– Similarity when values of properties on a
given level are equal — it is a more general
version of similarity based on equality of prop-
erties. This time, all datatype properties at a
given level need to be the same to conclude
that the tasks are similar.
The proposed approach makes it possible to

give the expert opportunity to select which levels
of similarity should be selected in a given con-
text. The decision is made by invoking one of
the following commands:
– ExactSearch() — it performs a search using

near-exact similarity comparison,
– Generalize(Relation, Class) — it alters search

criteria by introducing the similarity after
generalization to the Class.

– Generalize(Relation, Level) — it alters search
criteria by introducing the similarity after
generalization to the classes on the given
Level.

– SameProperties(Relation, Property) — it al-
ters search criteria by introducing the simi-
larity when values of the given Property are
equal.

– SameProperties(Relation, Level) — it alters
search criteria by introducing the similarity
when values of the properties on the given
Level are equal.
The Relation parameter shows in which direc-

tion the mechanism should work. It is important
to emphasize, that if an expert decides to ex-
ecute command on the specific relation, then
the remaining relations still have to match the

previously defined criteria. In addition, all the
previously applied commands might be reverted.

The method always starts from the Exact-
Search command, because it finds the tasks
that are the most similar. Afterwards, an expert
has possibility to execute different commands
and observe the results. The results could be
any means supporting expert-based effort esti-
mation, e.g., cumulative density function plots,
regression-based models, description of similar
tasks.

An example of supervised search session is
presented in Figure 3. It presents how the sim-
ilarity assessment of Task1 and Task2 changes
due to execution of commands. Initially, the
tasks cannot be classified as similar, because
on the 1-level only the Development and Java
is connected to both of them. When the expert
executes the SameProperties(hasPerformer, 2)
command, John and Anna become similar, be-
cause they both share the same node HighJava
on the 2-level. Finally, the expert executes Gen-
eralize(hasInput, 1) that generalizes UC1 and
UC3 to the same class Creation Use Case. As a
result, Task1 and Task2 are classified as similar.

4. Preliminary Empirical Evaluation

In order to preliminary evaluate the potential
usefulness of the proposed approach, we decided
to perform a post-mortem analysis of a software
development project. In particular, we wanted
to investigate whether estimates provided by the
proposed method could potentially prevent ex-
perts from making the most significant estima-
tion errors (especially prevent them from under-
estimating effort of tasks).

For the purpose of the method evaluation
we implemented a prototype tool on the top of
Apache Jena Framework. At current stage of
development, the tool cannot be used on-line
by an expert, because it lacks easy-to-use user
interface. Therefore, instead of conducting the
action research study, we decided to perform
analysis of existing data. This, however, visibly
limits the conclusions we could draw from the
study.
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Figure 3. An example of supervised search.

4.1. The Project under Study

The selected project (eProto3) was an in-house
software development project conducted at
Poznan University of Technology (PUT) in
2011-2012. Its main goal was to enhance the
existing system used to collect students’ final
grades. The development of the new version of
the system was one of the steps taken by the
University to fully eliminate the need of paper
students’ record books.

The project was conducted according to
the XPrince methodology [15], which combines
PRINCE2 [16] at organization level and eXtreme
Programming [7] at the product delivery level.

The project team consisted of PUT employ-
ees, 3rd and 4th year students. The total reported
effort in the project was around 1600 man-hours.

The lifecycle of the project was convergent
with PRINCE2 recommendations. During the
Initiating a Project stage (IP) non-functional
and functional requirements in form of use cases
were elicited. The prepared software require-

ments specification (SRS) served as a product
backlog. XPrince assumes that delivery stages
are organized similarly to releases in most of ag-
ile software development methods. The scope of
each delivery stage was agreed during a Planning
Game session [7]. Therefore, it was possible that
the project would not deliver whole functionality
that was defined in SRS.

The analysis was performed based on the
tasks recorded in the project’s issue tracker (Red-
mine) during the IP stage, and three delivery
stages (the distributions of the tasks’ actual ef-
fort are presented in Figure 4). Tasks contained
information about the estimated effort by the
project team members (we would refer to them as
expert estimates) and actual effort. The recorded
tasks related to large variety of activities, e.g.,
meetings, requirements engineering, implemen-
tation, testing, etc. Many of these tasks had
hierarchical structure, especially ones defined
during the delivery stages. For instance, each
delivery stage had a corresponding task, which
was decomposed into set of smaller tasks. For
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Figure 4. Box-plots presenting actual effort of the tasks in man-hours for all stages (All), Initiating a Project
stage (IP), and three releases (R1.1-3).

example, some of the sub-tasks were concerning
implementation of use cases. These tasks were
further decomposed to tasks which goals were to
implement use-case steps.

We were able to automatically retrieve most
of the data from the Redmine instance and miss-
ing information, e.g., performers capabilities, was
added manually (in this particular case, we sur-
veyed team members about their capabilities
during the project).

4.2. Evaluation Methodology

We wanted to compare the accuracy of tasks’
estimates obtained from three sources:
– (ES) analogy-based effort estimates based on

the results of exact search,
– (SS) analogy-based effort estimates based on

supervised search,
– (Exp) project team members’ estimates (ex-

perts’ estimates).
In order to compare the accuracy of estimates

we used a prediction error metric called balanced
measure of relative error (BRE)2, which is calcu-
lated as:

BRE = |actual effort−estimated effort |
min(actual effort ,estimated effort)

We also wanted to investigate if the predic-
tion method provided unbiased results. For this
purpose, we used slightly modified version of
BRE measure, called BRE_bias that is defined
in the following way:

BRE_bias = actual effort−estimated effort
min(actual effort ,estimated effort)

If the value of BRE_bias measure is greater
than zero it means that the effort was underesti-
mated. Negative value indicates overestimation.

We decided to analyze the accuracy of ef-
fort prediction approaches using the k-fold
cross-validation method. In the first step we ran-
domly divided the set of tasks into k=10 exclu-
sive subsets with possibly equal cardinality. The
validation process took k iterations. During each
of the iterations, a single set T became a testing
set while the remaining k -1 sets were treated
as historical database. Each task from the set
T was estimated using a given effort estimation
approach. The obtained estimate was compared
with the actual effort to calculate prediction error
measures.

By definition, the supervised search approach
should be used by an expert, who executes the

2 We decided to use the BRE error measure instead of MRE (Magnitude of Relative Error), which was more
frequently used in the past, because the latter one was recently criticized by many researchers, mainly for being
unbalanced. [17–20]
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commands in order to search for similar tasks.
The choice of command that expert executes is
determined by the results obtained in the previ-
ous step. Therefore, the expert search strategy
can differ depending on the task being estimated
and content of historical database. Unfortunately,
we were not able to simulate such complex be-
havior. Thus, in the analysis we defined a simple
strategy that our virtual expert used to super-
vise the search. The will of the expert to refine
the search was based on the number of simi-
lar tasks found in the previous iteration. If the
previous steps did not provide a single similar
task, expert performed the following steps (after
each step verifying if there are any similar tasks
found)3:
1. ExactSearch — the search started from find-

ing nearly-the-same tasks.
2. Generalize(hasInput, 1) — we decided that

the first refinement should concern making
inputs more abstract (e.g., instead of UC1 we
could have a use case with the main theme
of creating an object in the system).

3. SameProperties(hasPerformer, 2) — instead
of finding exactly the same performers, we
would like to find performers with the same
capabilities (e.g., highly skillful Java program-
mers instead of John Smith)4.

4. Generalize(hasMeans, 1) — we searched for
similar tasks that were performed with the
use of similar tools, programming language
or technologies.

5. SameProperties(hasType, 1) — finally, we try
to look for the tasks similar tasks that have
little bit more general type.
The second stage of the case-base reasoning

is to predict effort of the task based on found
similar tasks. In the study, we used the following
strategy to estimate effort. If size was available
both estimated and similar historical tasks, we
constructed a linear regression model. If the size
was not measured for the inputs, we selected
mean actual effort of similar tasks as the task
estimate.

4.3. Data Analysis

During the analysis of the eProto3 project data it
turned out that the experts’ estimates were pro-
vided for 132 out of 269 tasks (Exp). In addition,
the exact search approach was able to estimate
100 tasks (ES) and the supervised search pro-
vided estimates for 199 tasks (SS). Therefore,
in order to compare the prediction accuracy of
approaches we decided to analyze the following
sets of tasks: A = Exp ∩ ES ∩ SS (51 tasks), B
= Exp ∩ SS (100 tasks) and C = ES ∩ SS (100
tasks).

The first observation was that when all tasks
are considered, expert-based estimated are the
most accurate (error measures are presented in
Table 1). The average values of BRE ranged from
0.33 to 1.06 (depending on the measure of central
tendency and set of tasks). They also seemed to
be median-unbiased, while for mean-bias we ob-
served a tendency to underestimate. The exact
and supervised search approaches on average per-
formed visibly worse than experts—average BRE
ranged from 0.76 to 2.53. The estimates seemed
to be median-unbiased and contrary to experts’
estimates we observe a tendency to overestimate
for mean-bias (which from practical point of view
is favorable).

The second, not surprising, observation was
that the experts performed almost perfect when
it comes to small tasks (e.g., 1 man-hour or less).
Therefore, it seems that for such tasks no sup-
port is necessary. However, taking into account
how short iteration-cycles are planned in agile
software development, it is rarely observed that
tasks are decomposed to such a level. In eProto3
project, during the Planning Game sessions the
negotiation between the customer representative
and development team was usually at the level
of use cases (and rarely at the level of use-case
steps). Team members often added the estimates
of smaller tasks during the development.

As a result, we decided to filter out tasks
having actual effort lesser than 1 man-day (8

3 As it was presented in Section 4, the execution of commands Generalize and SameProperties does not redefine
the search criteria, but refine the existing ones.

4 During the analysis, it turned out that eProto3 team members had exclusive sets of capabilities, therefore, this
step did not have any effect on the results.
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BRE BRE_bias

Tasks set median mean SD median mean SD

All tasks:
Experts A=51 0.33 1.06 2.17 0.00 0.43 2.38

Exact Search A=51 1.00 1.91 3.85 0.00 -0.33 4.29
Supervised Search A=51 1.00 1.91 3.85 0.00 -0.33 4.29

Experts B=100 0.45 1.05 1.80 0.00 0.39 2.05
Supervised Search B=100 1.19 2.53 3.96 -0.06 -1.25 4.53

Exact Search C=100 0.76 1.78 3.05 -0.01 -0.52 3.49
Supervised Search C=100 0.76 1.78 3.05 -0.01 -0.52 3.49

Actual effort >= 8h:
Experts A’=8 0.85 2.56 4.25 0.79 2.40 4.35

Exact Search A’=8 0.00 0.38 0.63 0.00 0.03 0.75
Supervised Search A”=8 0.00 0.38 0.63 0.00 0.03 0.75

Experts B’=31 0.70 1.49 2.43 0.60 1.29 2.55
Supervised Search B’=31 0.70 0.95 0.93 0.00 -0.23 1.32

Exact Search C’=10 0.00 0.33 0.57 0.00 0.00 0.67
Supervised Search C’=10 0.00 0.33 0.57 0.00 0.00 0.67

All tasks and BRE Experts > 2: (the results for C would be the same as for A)
Experts A”=6 4.81 6.07 3.32 4.06 2.91 6.72

Exact Search A”=6 1.69 2.82 3.88 0.22 -1.24 4.77
Supervised Search A”=6 1.69 2.82 3.88 0.22 -1.24 4.77

Experts B”=14 4.00 4.75 2.47 3.65 2.39 4.92
Supervised Search B”=14 1.35 3.16 3.84 -0.64 -2.27 4.47

Table 1. Effort estimation errors (BRE and BRE_bias).

man-hours) and repeat the analysis. This time
the on average values of BRE for experts’ esti-
mates ranged from 0.70 to 2.56. We also observed
a visible tendency to underestimate effort of big-
ger tasks by the experts. The exact and super-
vised search approaches on average performed a
little bit better than experts—the average BRE
ranged from 0.00 to 0.95 (the most important
comparison, based on the set B’ indicated differ-
ence in median BRE between experts and the
supervised search approach at the level of 0.00
and for mean BRE at the level of 0.54). Again
the proposed approaches seemed almost unbiased
(in one case a minor tendency to overestimate
was observed).

The goal of the proposed analogy-based effort
estimation method is to support, not eliminate,
expert in effort estimation. Therefore, we decided
to investigate if the proposed approaches could
potentially prevent experts from making most
harmful errors in their estimations. The idea was
to select tasks that had BRE for expert-based ef-
fort estimates greater than 2.00 and observe their
corresponding estimates suggested by the tool.
The first observation was that both experts and
proposed approaches were not able to provide
accurate estimates. The average BRE for experts
ranged from 4.00 to 6.07 with major tendency
to underestimate. The proposed approaches per-
formed better—the average BRE ranged from
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1.35 to 3.16. With a single exception, the pro-
posed approaches had tendency to overestimate.

4.4. Discussion of the Results

First of all, we want to emphasize that the goal
of the study was not to prove that the method
provides estimates with higher accuracy than
experts. Instead we treated it as a preliminary
study that would show us further directions for
improvements.

To sum up the results, we have to admit that
generally team members were able to provide ac-
curate effort estimates. The estimates provided
by tool, especially for small tasks, were less accu-
rate. However, when the size of the task increased,
the accuracy of the tool was comparable, or tak-
ing into account its tendency to overestimate
even practically favorable.

We observed that the main reason of poor
performance of the proposed approaches was
the lack of quantitative complexity measured
for most of the tasks. We observed that accuracy
of the tool could be increased either by providing
these kind of measures (e.g., even simple measure
such as number of pages of documentation to
be produced, etc.) or to precisely describe tasks
using the ontology. We believe that the prob-
lem could be mitigated if a true human expert
was supervising the tool. From our investigation
many of the tasks were correctly classified as sim-
ilar, taking into account available information,
however, after reading their titles, the difference
between them became obvious.

We also observed that the tool was able to
provide better estimates for the tasks that were
poorly estimated by experts, which in our opin-
ion is a promising finding. However, still the
question arises if the feedback provided by the
system would have strong-enough impact on ex-
perts’ decisions to prevent them from making
significant mistakes in their estimates.

4.5. Limitations and Threats to Validity
of the Study

There are limitations and threats to validity of
the study that needs to discussed. The main

threat to construct validity relates to the fact
that the proposed study assessed only some as-
pects of the proposed approaches. We believe
that the approaches should support expert-based
effort estimation, e.g., as an external voice in
group-based effort estimation methods like Plan-
ning Poker. However, in the study we simulated
behavior of an expert, who always performed in
the same way (even if it was unreasonable in a
given context).

The main threats to internal validity relate
mainly to the project data we obtained from the
Redmine system. We suspect that for smaller
tasks experts could record actual effort in such
a way that it fit the estimated effort (e.g., if
one completes a task that was estimated for 30
minutes in 20 minutes he/she very often will just
copy the estimated effort as actual). From the
practical point of view the difference is not so
visible, but when it comes to calculating BRE
measure its impact becomes visible.

The threats to external validity regard the
ability to generalize the findings. The goal of
the study was to collect first observations re-
garding the method. Therefore, this group of
threats does not affect the results too much. The
most important threats in this category refer to
the size of the sample and software development
methodology that was used. For instance, the
requirements were documented in the form of
use cases rather than in the form of user stories.

5. Related Work

There are three categories of related works that
we would like to discuss, namely, analogy-based
effort estimation, supporting effort estimation
during release planning in agile software devel-
opment and usage of ontologies for effort estima-
tion.

Analogy-based effort estimation has been de-
veloped for many years. Probably the most rec-
ognized methods of this type are ACE [3], AN-
GEL [4], Estor [5].

The main challenge of analogy-based effort
estimation is the construction of a mechanism
that will enable us to find similar cases (projects)
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to the target one that is estimated. Most of
the methods tackle with this problem by rep-
resenting software projects in vector spaces (each
feature is represented by a single dimension).
Then various techniques are used to find simi-
lar projects, e.g., based on different similarity
distance measures, e.g., Euclidean, Manhattan,
Minkowski.

Another, important problem is that the accu-
racy of analogy-based methods strongly depen-
dent on the precision of historical data. Recently,
Azzeh et al. [21] proposed to use Fuzzy numbers
to mitigate this problem. The advantage of this
solution is that it can be applied when not all
requirements are known. The main drawback is
that it is only usable on the project level.

Our approached differs visibly from the pre-
vious works in the area, because it enhances
case-based reasoning process with semantics. Giv-
ing the analogy to the approaches using vector
spaces, we could say that we are able to dynam-
ically transform the vector space that is used
to describe the projects and to find similarities
between them.

Still, the main aim of our approach is to
support effort estimation during release plan-
ning activities (especially, in agile software de-
velopment). Majority of related works in this
area focus on expert-based (and particularly
grouped-based) effort estimation methods. For
instance, the Planning Poker method has been
recently frequently studied [8–11]. However, there
are some works concerning usage of model-based
effort estimation methods at the release level. For
instance, Hearty et al. [22] proposed the method
to predict Project Velocity using Bayesian Nets
(BNs); Miranda et al. [23] proposed an approach
to support sizing of user stories based on paired
comparison.

The usage of ontologies to effort estimation
was considered by Hamadan et al. [24]. They
identified the importance of organizational and
cultural factors and project leadership for im-
proving effort estimates by analogy. The authors
created a project ontology, which focuses on the
environmental factors. Distance between projects
was calculated and used to assess their similarity.
However, this approach could be used only at

the project level and requires a large number of
similar projects in the database.

6. Conclusions

We proposed a new approach to model project
data to support expert-supervised analogy-based
effort estimation. The data is modeled using Se-
mantic Web technologies, such as Resource De-
scription Framework (RDF) and Ontology Lan-
guage for the Web (OWL).

In addition, we defined a method of super-
vised case-based reasoning. The method enables
to search for similar project tasks at different
levels of abstraction. For instance, instead of
searching for a task performed by a specific per-
son, one could look for tasks performed by people
with similar capabilities.

The proposed method relies on ontology that
defines the core concepts and relationships. How-
ever, it is possible to introduce new classes and
relationships, without the need of altering the
search mechanisms.

Finally, we implemented a prototype tool that
was used to preliminary validate the proposed
approach. We observed that the proposed ap-
proach could potentially help experts in estimat-
ing non-trivial tasks that are often underesti-
mated.
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