PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Some Remarks on the Safety of Methane Penthrite Detonating Cords against the Inflammability of a Methane-Air Mixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After analysing literature data some topics related to the properties and testing methods of detonating cords (DCs) are presented. The main attention is paid to the 2,2-bis[(nitrooxy)methyl]propane-1,3-diyl dinitrate (penthrite, PETN)-based DCs. In a case study of methane PETN DC, it is shown that the problem of DCs being able to fulfil safety precautions as permitted explosives is very complex, i.e. to determine their ability to ignite a methane-air atmosphere in coal mines. The tests have shown that the relationships between safety and the performance properties of methane PETN DC are not obvious. For example, an increase in the outer thickness coating of this methane PETN DC, causes the inflammability of a methane-air mixture to be decreased. Moreover, an increase in the amount of crystalline PETN in the cord’s core caused an increase in its velocity of detonation, but had no impact on its ability to ignite a methane-air mixture in the experimental gallery.
Rocznik
Strony
181--203
Opis fizyczny
Bibliogr. 102 poz., rys., tab.
Twórcy
  • Central Mining Institute – Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
Bibliografia
  • [1] Prior, J.; Wuckel, H.; Florin, A. Fuse Having an Improved Sheathing. Patent US 3382802, 1968.
  • [2] Świetlik, M.; Duda, D. New Waterproof Methane Pentritol Detonating Fuse. (in Polish) Przegl. Górn. 1999, 11: 14-16.
  • [3] Baker, J.J. Detonating Cord with Flash-suppressing Coating. Patent US 4316415, 1982.
  • [4] Helfgeni, W.; Rohde, W. Fuze for Use in Firedamp-Endangered and Coal-Dust-Endangered Operations. Patent US 3730097, 1973.
  • [5] Baker, J.J.; Sittig, R.C.; Ciaramitaro, D.A. Detonating Cord with Flash-suppressing Coating. Patent US 4312272, 1982.
  • [6] Kissell, F.N. Handbook for Methane Control in Mining. Information Circular 9486, Pittsburgh Research Laboratory, National Institute for Occupational Safety and Health, Pittsburgh, PA, 2006.
  • [7] Sobala, J.; Sobala, J. A Characteristics of Results of Current Examinations of Safety of Blasting Agents and Blasting Operations Against Methane and Coal Dust. Scientific Works of Central Mining Institute. Series. Conferences No 43 Safety of Blasting Operations in Mining, Katowice, 2002, pp. 65-90.
  • [8] Zawadzka-Malota, I. Study of the Effect of Thickness of the Outer Coating of the Methane Penthrite Detonating Cord on Flammability of Methane-Air Mixture in Experimental Gallery. (in Polish) Przegląd Górniczy 2017, 73(3): 83-88.
  • [9] Kazanin, O. The Main Trends in Underground Mining Technologies to Overcome the Risks at Russian Coal Mines. Górnictwo i Geologia 2012, 7(4): 41-46.
  • [10] Zipf Jr., R.K.; Gamezo, V.N.; Sapko, M.J.; Marchewka, W.P.; Mohamed, K.M.; Oran, E.S.; Kessler, D.A.; Weiss, E.S.; Addis, J.D.; Karnack, F.A.; Sellers, D.D. Methane-Air Detonation Experiments at NIOSH Lake Lynn Laboratory. NIOSH, US, https://www.cdc.gov/niosh/mining%255C/UserFiles/works/pdfs/madea.pdf [retrieved 09.02.2022].
  • [11] Zheng, Y.-P.; Feng, C.-G.; Jing, G.-X.; Qian, X.-M.; Li, X.-J.; Liu, Z.-Y.; Huang, P. A Statistical Analysis of Coal Mine Accidents Caused by Coal Dust Explosions in China. J. Loss Prev. Process Ind. 2009, 22(4): 528-532.
  • [12] Thakur, P. Advanced Mine Ventilation. Respirable Coal Dust, Combustible Gas and Mine Fire Control. Woodhead Publishing, 2019, pp. 377-398; ISBN-13: 978- 0081004579.
  • [13] Determination of the Explosion Limits and the Limiting Oxygen Concentration (LOC) for Flammable Gases and Vapours. European Standard EN 1839, 2017.
  • [14] Meyer, R.; Köhler, J.; Homburg, A. Explosives. Sixth, Completely Revised Edition. WILEY-VCH Verlag GmbH, Weinheim, 2007; ISBN 978-3-527-31656-4.
  • [15] Test and Approval of Explosives for Use in Coal Mines and other Mines in which Flammable Gas may be a Hazard. In: Testing Memorandum TM2, Health and Safety Executive. HSE, Buxton, UK, 1988.
  • [16] Requirements for Approval of Explosives and Sheathed Explosive Units. In: Code of Federal Regulations Title 30, Part 15.20, Mine Safety and Health Administration. U.S. Department of Labor, MSHA, Arlington, VA, 1988.
  • [17] AENOR, Explosivos de seguridad. Metodos y criterios de ensayo, UNE ´31310, (in Spanish) Asociacion Espanola de Normalizacion y Certificacion, Madrid, 1993.
  • [18] Explosifs a usage civil – Explosifs utilises en mines de charbon et autres travaux souterrains – Evaluation de l’aptitude a l’emploi dans des atmospheres contenant des gaz inflammables. (in French) AFNOR T 70-014 to 017, Association Francaise de Normalisation, Paris, 1994.
  • [19] Sprengmittel – Wettersprengstoffe – Teil 1: Anforderungen, Prufung, Kennzeichnung. (in German) Standard DIN 20164-1:2007-01, Berlin, 2007.
  • [20] Fleming, J.R.; Koster, J.W. The Use of Permissible Explosives in the Coal Mines of Illinois. Bureau of Mines, Bulletin 137, Washington, 1917.
  • [21] Detonating Cords. Examination of Safety against Methane. (in Polish) Polish Standard PN-C-86058:1998, 1998.
  • [22] Explosives for Civil Use. Detonating Cords and Safety Fuses. Determination of Velocity of Detonation. (in Polish) Polish Standard PN-EN-13630-11:2004, 2004.
  • [23] Detonating Cords. Heat Resistant and Heat and Pressure Resistant in a Leaden Coating. (in Polish) Polish Standard PN-C-86069:1998, 1998.
  • [24] Zawadzka-Malota, I. The Influence of the Density of the Penthrite in the Core of Methane Detonating Cord on the Inflammability of Methane-Air Mixture in Experimental Gallery. (in Polish) Przegląd Górniczy, 2019, 75(8): 1-5.
  • [25] Fordham, S. Permitted Explosives. In: High Explosives and Propellants. 2nd ed., Pergamon Press, 1980, pp. 75-89; ISBN 0-08-023834-3.
  • [26] Detonating Cord. Patent RU 2696458, 2019.
  • [27] Detonating Cord L5A1. Chemring Energetics UK, 2016.
  • [28] Daveycord. Nitro-Bickford®, France, 2009.
  • [29] Kaye, S.M.; Herman, H.L. Encyclopedia of Explosives and Related Items. Part 2700, Vol. 9, US Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, Dover, New Jersey, US, ADA 097595, 1980, p. S134.
  • [30] Wesson, D.S.; George, K.R. Control Line Differential Firing Head. Patent US 4836109, 1989.
  • [31] General Instructions for Demilitarization/Disposal of Conventional Munitions. Technical Manual TM 9-1300-277, US, 1982, pp. 5/13.
  • [32] Michelis, J.; Margenburg, B.; MüIler, G.; Kleine, W. Investigations into the Buildup and Development Conditions of Coal Dust Explosions in a 700-m Underground Gallery. In: Industrial Dust Explosions. ASTM Special Technical Publication 958 (Cashdollar, K.L.; Hertzberg, M., Edts.), Pittsburgh, 1986, pp. 124-137; ISBN 0-8031-0957-1.
  • [33] Paporotski, L.A. Contemporary Items and Techniques of Blasting. (in Russian) Wzrywnoe Dzielo 1962, 48(5): 5-9.
  • [34] Epow, B.A. Fundamentals of Blasting Works. (in Russian) Moscow, 1974, pp. 68-72.
  • [35] Enoksson, B.P. Conductor Containing Explosive Gas Mixture for Initiation of Ignition Element and Explosive Charge. Patent US 4041867, 1977.
  • [36] Raina, A.K.; Agarwal, A.; Singh, R.B.; Choudhury, P.B. Electronic Detonators: The Psychological Edge. J. Mines, Metals, Fuels 2015, 63(4): 88-96.
  • [37] Fedoroff, B.T.; Sheffield, O.E. Encyclopedia of Explosives and Related Items. Part 2700, Vol. 3, Picatinny Arsenal, Dover, New Jersey, US, AD 653029, 1966.
  • [38] Military Explosives. Dept. Army Technical Manual, TM 9-1300-214, 1990, pp. 8-20.
  • [39] Societe dExplosifs et Produits Chimiques SA, Detonating Cord. (in French) Patent FR 410252A, 1910.
  • [40] Ellsworth, H.E. Fuse. Patent US 1023142, 1912.
  • [41] Liu, G. Microstructure and Mechanical Properties of Tin-based Alloys for Miniature Detonating Cords. Doctoral Thesis, Brunel University London, United Kingdom, 2019.
  • [42] Cao, L.; Lin, Y. ; Lu, F.; Chen, R. ; Wen, X. Study on Energy Output Efficiency of Mild Detonating Fuse in Cylinder Tube Structure. Materials & Design 2016, 92: 690-700.
  • [43] Rogers, T.E. Flexible Detonating Cord. Patent US 5223664, 1993.
  • [44] Challacombe, B.J. Apparatus for Stimulating Oil Extraction by Increasing Oil Well Permeability using Specialized Explosive Detonating Cord. Patent US 6732799, 2004.
  • [45] Fuller, J.; Nakamura, M.; Bertoja, M. Signal Conducting Detonating Cord. Patent US 7661366, 2010.
  • [46] Geerts, S.M.; Clay, M.C. EFP Detonating Cord. Patent US 20170058648A1, 2017.
  • [47] Geerts, S.M.; Wood, J.D. High Shot Density Perforating Gun. Patent US 20170058649A1, 2017.
  • [48] Preiss, F.H.; Mcnelis, L.; Scharf, T.; Eitschberger, C.; Scharfenort, B. Conductive Detonating Cord for Perforating Gun. Patent US 10845177, 2020.
  • [49] Eitschberger, C.; Scharf, T.; Burmeister, G.U. Single Charge Perforating Gun. Patent US 10920543, 2021.
  • [50] Goodman, K.; Guilkey, J. Detonator Structure and System. Patent US 10190398, 2019.
  • [51] Love, D.N. Method and Apparatus for Treating a Well. Patent US 20170342801A1, 2017.
  • [52] Kelly, S.R.; O’brien, J.P.; Morrow, W.C. No-flash Seismic Cord. Patent US 4102428, 1978.
  • [53] Schwartz, A.C. Application of Hexanitrostilbene (HNS) in Explosive Components. Sandia Laboratories, Report SC-RR-71 0673, Albuquerque, N.M., 1972, p. 13.
  • [54] Spencer, J.H.; Ramsey, R.T.; Gilbertson, W.L. Mild Detonating Fuse Logic Components. Patent US 3669021, 1972.
  • [55] Alchorn, T.R.; Gans, W.A.; Mellana, W.D. Explosive Energy Transfer System/ Patent US 3851587, 1974.
  • [56] Kilmer, E.E. Method for Preparing Heat Resistant Mild Detonating Fuse. Patent US 3903800, 1975.
  • [57] Piegols, B.W.; Eccard Jr., G.D. Shipping Cap for Shielded Mild Detonating Cord and Resulting Assembly for Safe Shipping. Patent US 7954432, 2011.
  • [58] Wen, X.; Lu, F.; Chen, R.; Lin, Y. A Theoretical Analysis about the Driving Mechanism of Mild Detonating Fuse. Propellants Explos, Pyrotech. 2015, 40(6): 898-907.
  • [59] Explosives – Cords for Mining – Classification and Marking. (in Polish) Branch Stadard BN-90/6094-40, Poland, 1991.
  • [60] Belin, V.A.; Avdeev, A.F. Technical Conditions, Directions and Priorities for Blast Technology Development in Russia. In: Explosives and Blasting Technique. (Holmberg, R., Ed.) A.A. Belkema Publisher, Lisse, Abingdon, Exton, Tokyo, 2003, pp. 593-596; ISBN 90-5809-6-5-X.
  • [61] Persson, P.-A. Fuse. Patent US 3590739, 1971.
  • [62] Carter, J.D. Energetic Laden Fiber for Explosive Cord Fill. Patent US 20200361833A1, 2020.
  • [63] Gladden, E.L.; Tavelli, S.B. Impeded Velocity Signal Transmission Line. Patent US 4838165, 1989.
  • [64] Austin Europe. Products and Services. Version 03-2022. Austin Powder, p.35.
  • [65] Andrew, D.J.; Tanner, A.E. Composite Explosive Signal Transmission Cord and Method of Making Same. Patent US 3241489, 1966.
  • [66] Improved Detonating Cord. Patent GB 839832, 1958.
  • [67] PRIMACORD-40 RDX NYLON RIBBON. Material Safety Data Sheet, Orica, Australia, 2008.
  • [68] Kilmer E.E. Detonating Cords Loaded with Hexanitrostilbene (HNS) Recrystallized from Acid or Organic Solvents. NSCW/WOL/TR 75-142, White Oak, 1975.
  • [69] Lambert, J.A.; Interiano, L.G. Methods and Systems for an Explosive Cord. Patent US 10087119, 2018.
  • [70] Lambert, J.A.; Interiano, L.G. Methods and Systems for an Explosive Cord. Patent US 20170320788A1, 2017.
  • [71] Garcia, F. High-output Insensitive Munition Detonating Cord. Patent US 6247410, 2001.
  • [72] Detonating Cord PYXtremeTM T 300 PYX 1.4D. Commercial materials of DynaEnergeticsTM, 2018.
  • [73] Barkley, T.L.; Johnson, D.P.; Kelly, S.R.; Lee, R.A.; Woodall, M.E. Detonating Cord and Methods of Making and Using the Same. Patent US 20070214990A1, 2007.
  • [74] Bellamy, A.J.; Dearing, S.L. The Incompatibility of RDX and Lead. Proc. 33rd Int. Annual Conf. ICT, Karlsruhe, Germany, 2002, 47/1-11.
  • [75] Bellamy, A.J.; Dearing, S.L. The Incompatibility of RDX and Lead. Propellants Explos. Pyrotech. 2002, 27(6): 352-360.
  • [76] Bellamy, A.J.; Lai, W.M. Non-Standard Vacuum stability Tests on Mixtures of RHA and Metal Powders. Proc. 35th Int. Annual Conf. ICT, Karlsruhe, Germany, 2004, 134/1-7.
  • [77] Kelly, S.R.; Smith, J.M. Dormant Explosive Device. Patent US 3435764, 1969.
  • [78] Calder Jr., B.J.; Risko, B.L.; Belock, R.J. Detonating Device and Method for Making the Same. Patent US 3726216, 1973.
  • [79] Liu, K.; Jiang, K.-L.; Liu, L.; Fan, S.-S. Carbon Nanotube-based Detonating Fuse and Explosive Device Using the Same. Patent US 8297188, 2012.
  • [80] Srirajaraghavaraju, R.R. Transmitted Pressure and resulting Crack Network in selected Rocks from Single-hole Blasts in Laboratory-scale Experiments. Master Thesis, University of Toronto, Toronto, Canada, 2014, p. 16.
  • [81] Abrahamson, G.R.; Huber, G.B. Precision High‐Velocity Detonating Cord. Rev. Sci. Instrum. 1959, 30(10): 934.
  • [82] Mccaffrey, F.H.G. High Speed Detonating Cord with Modified Velocity of Detonation. Patent US 4402270, 1983.
  • [83] NITROCORD – Pentrite Detonating Cord. Hazard Data Sheet, NITROERG KGHM Group, https://nitroerg.pl/en/produkt/nitrocord/ [retrieved Dec., 2020].
  • [84] Tarver, C.M. Jones-Wilkins-Lee (JWL) Reaction Products Equations of State for Overdriven PETN Detonation Waves. Proc. 21st Biennial Conf. of the APS Topical Group on Shock Compression of Condensed Matter, Portland, US, 2019.
  • [85] Shekhar, H. Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives. Cent. Eur. J. Energ. Mater. 2012, 9(1): 39-48.
  • [86] Pingua, B.M.P.; Nabiullah; Mishra, G.D.; Patel, K.L. Study on Underwater Blasting Energy and Flame Characteristics of Detonators and Detonating Fuse. Sci. Tech. Energetic Mater. 2008, 69(6): 191-195.
  • [87] Świetlik, M.; Krzystolik, P.; Badura, E.; Leśniewski, H.; Zioło, Z.; Podolski, W.; Wojnar, J.; Włachowicz, A.; Perzyna, M.; Sajdak B. Detonating Cord. (in Polish) Patent PL 159993, 1993.
  • [88] Detonating Cord. Product guide V1. EPC Groupe, https://www.epc-group.co.uk [retrieved Dec. 2020].
  • [89] Detonating Cord. Technical Information, Ver. 8, Dyno Nobel Asia Pacific Pty Ltd., 2018.
  • [90] Products and Service Catalogue. Titanobel, 2016, p. 22.
  • [91] Garrison, G.C.; Southern, W. Mild Detonating Cord Confinement. Patent US 4178853, 1979.
  • [92] Prior, J. Detonating Fuse. Patent US 3730096, 1973.
  • [93] Welsh, D.M. Manufacture of Detonating Fuse Cord. Patent US 3698280, 1972.
  • [94] Garrison, G.C.; Southern, W. Mild Detonating Cord Confinement. Patent US 4083305, 1978.
  • [95] Preiss, F.H.; Mcnelis, L.; Scharf, T.; Eitschberger, Ch.; Scharfenort, B. Conductive Detonating Cord for Perforating Gun. Patent US 10386168, 2019.
  • [96] Bradley, R.W.; Collins, W.R.; Lane, A.; Langford, D.; Levine, Ch.; Pundole, F.; Smith, R. Fiber Optic Cable in Det Cord. Patent US 20170121236A1, 2017.
  • [97] Regalbuto, J.A.; Dines, J.E. Polygonal Detonating Cord and Method of Charge Initiation. Patent US 4753170, 1988.
  • [98] Blair, J.P. Method for Manufacturing Detonating Fuse-Cord. Patent US 3995525, 1975/1976.
  • [99] Steele D. Explosive Fuse-cord. Patent US 4177732, 1979.
  • [100] Sheeran, H.W. Luminescent Coated Detonating Fuse. Patent US 3474730, 1969.
  • [101] Walsh, B.M.; Franklin, C.P. Detonating Cord with Protective Jacket. Patent US7921776, 2011.
  • [102] Detonating Cords for Rock Blasting, Pentrite NITROCORD. NOBELCORD, ROWOCORD, CORDTEX. Hazard Data Sheet, NITROERG S.A., Bieruń, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a80175f4-089b-495f-b4d8-427702de6f1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.