
Vibrations in Physical Systems Vol. 27 (2016) 

The Dynamics of a Coupled Mechanical System 

with Spherical Pendulum 

Danuta SADO 

Warsaw University of Technology, Institute of Machine Design Fundamentals 

Narbutta 84, 02-524 Warsaw, dsado@poczta.onet.pl 

Jan FREUNDLICH 

Warsaw University of Technology, Institute of Machine Design Fundamentals 

Narbutta 84, 02-524 Warsaw, jfr@simr.pw.edu.pl 

Anna DUDANOWICZ 

International School of Gdansk, Sucha 29, 80-180 Gdansk 

aniamil@wp.pl 

Abstract 

The nonlinear response of a three degree of freedom vibratory system with spherical pendulum in the 
neighbourhood internal and external resonance is investigated. It was assumed that spherical pendulum is 

suspended to the main body which is suspended by the element characterized by elasticity and damping and is 

excited harmonically in the vertical direction. The equation of motion have bean solved numerically. In this 

type system one mode of vibration may excite or damp another one, and for except different kinds of periodic 

vibrations there may also appear chaotic vibration. 
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1. Introduction  

The subject of this work is investigation of initial conditions effect on dynamics of a 

three degree of freedom system with spherical pendulum. Dynamical systems with 

element of the mathematical or physical pendulum type have important applications. 

Different kind of coupled autoparametric oscillators with simply pendulums is presented 

in book [1]. The real pendulum is a spherical character. Spherical pendulum was 

investigated by a lot of researches. Spherical pendulum subject to parametric excitation 

was studied by Miles and Zou [2], and with kinematic external excitation by Naprstek 

and Fischer [3]. The bifurcation behaviour of a spherical pendulum where the suspension 

point is harmonically excited in both vertical and horizontal directions was presented by 

Leung and Kung [4], spherical pendulum with moving pivot by Mitrev and Grigorov [5], 

stochastic analysis of a spring spherical pendulum was done by Viet [6], the dynamics 

coupled spherical pendulums was studied by Witkowski at all [7]. 

In the present paper is assumed that the spherical pendulum is suspended to the 

flexible element, so in this system may occur the autoparametric excitation as a result of 

inertial coupling. 
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2. System description and equation of motion 

The investigated system is shown in Figure 1. 

 

 

Figure 1. Schematic diagram of system 

The system consists of a body of mass m1 suspended on the flexible element of 

rigidity k and damping c and a spherical pendulum of length l and mass m2 suspended on 

the body of mass m1.The body of mass m1 subjected to harmonic vertical excitation and 

the spherical pendulum subjected to harmonic horizontal excitation. 

The spherical pendulum is similar to the simple pendulum, but moves in 3-

dimensional space, so we need to introduce the new variable φ in order to describe the 

rotation of the pendulum in space xy. The position of the body of mass m1 is described  

by coordinate z and position of the pendulum is describe by coordinate z and two angles: 

Θ and φ. Angle Θ is the deflections of pendulum measured from the vertical line. This 
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system has three degrees of freedom . The equations of motion are derived as Lagrange’s 

equations. 

The kinetic energy Ek is the sum of the energy two bodies 
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The kinetic energy Ek are given by the expression 
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The potential energy Ep are given by the expression 
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Assuming that the exciting forces are in form: tPtFtPtF 22211 cos)(cos)( nn == , the 

equations of motion of the system are in form 
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By introducing the dimensionless time and dimensionless parameters 
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We can transform (5) into dimensionless form 
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(where the overbars denoting nondimensionalisation are omitted for convenience). 

After transformations equations of motion can be written in form easier to calculations 
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3. Numerical results 

Equations (8) are solved numerically by using R-K method with step length variable. 

The calculations are carried out for different values of parameters of the system and for 

different initial conditions. Exemplary time histories of displacements z and θ obtained 

for the initial conditions for the body of mass m1 are presented in Figure 2, where we can 

observe the energy transfer between the modes of vibration in a closed cycle. In this case 

spherical pendulum behaviour is the some than simple pendulum and the motion of 

pendulum is in vertical plane (angle φ is constant). The diagram of internal resonance for 

initial conditions put on the displacements is presented in Figure 4 and it is similar to 

simple pendulum presented in work [1]. We observe resonance excitation for frequency 

ratio β=0.5. In this case assuming the simple pendulum results are good. 

When the initial conditions are put on the displacements and on the velocities 

( 96.0)0(;0)0(;04.0)0(,5)0(.;0)0(;0)0( -==-==== jjqq &&&
ozz ) we observe influence of 

angle φ. (Figures 3). Exemplary internal resonance in this case we observe for frequency 

ratio β=0.51 (Figure 5). 
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Figure 2. Time history for: a=0.8; β=0.5;γ=0; A1=A2=0; 

z(0)=0.1;Θ(0)=0.005˚; φ(0)=0 
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Figure 3. Time history for: a=0.5; β=0.51;γ=0; A1=A2=0; 

96.0)0(;0)0(;04.0)0(,5)0(;0)0(;0)0( -==-==== jjqq &&&
ozz  
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Figure 4. Internal resonance for: a=0.8;γ=0; A1=A2=0;  

z(0)=0.1; Θ(0)=0.005˚; φ(0)=0 

 

Figure 5. Internal resonance for: a=0.5;γ=0; A1=A2=0; 

96.0)0(;0)0(;04.0)0(,5)0(;0)0(;0)0( -==-==== jjqq &&&
ozz  

 

Figure 6. Internal resonance for: a=0.2;γ=0; A1=A2=0; 

296.0)0(;0)0(;04.0)0(,50)0(;65.0)0(;0)0( -==-==== jjqq &&&
ozz  
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But when the initial conditions are put on the displacements and on the velocities 

( 296.0)0(;0)0(;04.0)0(,50)0(;65.0)0(;0)0( -==-==== jjqq &&&
ozz ) we observe influence 

of angle φ and internal resonance area in this case we observe for frequency ratio near 

β=0.75 (Figure 6). In this case φ described the rotation of the pendulum around axis z, so 

assuming the spherical pendulum we have the results more similar to the real system. 

3. Conclusions  

The influence of initial conditions on the behaviour of an autoparametric system with 

spherical pendulum is very interesting, because sometimes when initial conditions are 

put on the displacements spherical pendulum is similar to simple pendulum (angle φ is 

const.), but when the initial conditions are put on the velocities we observe influence of 

angle φ. It is important, because near internal and external resonance area can existence 

the different motion - regular or chaotic. The autoparametric systems are very sensitive 

on nonlinearities. The spherical pendulum is more similar to the real systems then the 

simply pendulum. 
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