PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tailoring hydrophobicity properties of polyvinylidene fluoride infused graphene composite films

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a synthesis to improve surface wetting resistance composites via infusion of graphene (G) structure into the polyvinylidene fluoride (PVDF) matrices is introduced. Graphene is incorporated into the PVDF matrix with a percentage of 1.0 wt.% up to 2.5 wt.% using simple solvent blending and dry-casting methods. The morphological and structural properties of the graphene infused into PVDF are investigated using a variety of characterization techniques, including field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. The tensile properties of graphene infused into the PVDF matrix are investigated using the INSTRON Universal test. The need for hydrophobicity performance on polyvinylidene fluoride infused graphene (PVDF/G) composite is also reported. Based on our evaluation, we ascertain that the PVDF/G-1.5% produces extremely high values for ultimate tensile stress and Young’s modulus, amounting, respectively, to 90.24 MPa and 5720.88 MPa. The PVDF/G composite exhibits surface roughness and increases water contact angle (CA) by 20° more than pure PVDF. Therefore, it is possible to deploy PVDF/G composite thin films with suitable mechanical strength and hydrophobicity in biomedical material-based engineering applications.
Słowa kluczowe
Wydawca
Rocznik
Strony
72--79
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Institute for Advanced Studies, University of Malaya, Nanotechnology & Catalysis Research Centre (NANOCAT)
  • Institute for Advanced Studies, University of Malaya, Nanotechnology & Catalysis Research Centre (NANOCAT)
  • Institute for Advanced Studies, University of Malaya, Nanotechnology & Catalysis Research Centre (NANOCAT)
  • Institute for Advanced Studies, University of Malaya, Nanotechnology & Catalysis Research Centre (NANOCAT)
  • Institute for Advanced Studies, University of Malaya, Nanotechnology & Catalysis Research Centre (NANOCAT)
autor
  • Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • Institute for Advanced Studies, University of Malaya, Nanotechnology & Catalysis Research Centre (NANOCAT)
Bibliografia
  • [1] Sahrash R, Siddiqa A, Razzaq H, Iqbal T, Qaisar S. PVDF based ionogels: applications towards electrochemical devices and membrane separation processes. Heliyon. 2018;4:e00847; https://doi.org/10.1016/j.heliyon.2018.e00847
  • [2] Tian M, Chi S, Qu L, Chen S, Ran J, Zhu S, et al. Scalable non-solvent-induced phase separation fabrication of poly(vinylidene fluoride) porous fiber with intrinsic flame-retardation and hydrophobic properties. Iran Polym J. 2018;27:115–24; https://doi.org/10.1007/s13726-017-0595-0
  • [3] Qu P, Zhu X, Peng X, Zhang M, Yang B, Liu, X. Ultrathin ceramic nanowires for high interface interaction and energy density in PVDF nanocomposites. Int J Appl Ceram Technol. 2019;16:1200–8; https://doi.org/10.1111/ijac.13150
  • [4] Kalimuldina G, Turdakyn N, Abay I, Medeubayev A, Nurpeissova A, Adair D, et al. A review of piezoelectric PVDF film by electrospinning and its applications. Sensors. 2020;20(18):5214; https://doi.org/10.3390/s20185214
  • [5] Saxena P, Shukla P. A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride) (PVDF). Adv Compos Hybrid Mater. 2021;4:8–26; https://doi.org/10.1007/s42114-021-00217-0
  • [6] Abbasipour M, Khajavi R, Yousefi AA, Yazdanshenas ME, Razaghian F, Akbarzadeh A. Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym Adv Technol. 2019;30:279–91; https://doi.org/10.1002/pat.4463
  • [7] Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X. Properties and applications of the β phase poly (vinylidene fluoride). Polymers. 2018;10(3):228; https://doi.org/10.3390/polym10030228
  • [8] Zhao X, Zhang Q, Chen D, Lu P. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules. 2010;43:2357–63; https://doi.org/10.1021/ma902862u
  • [9] Li C, Chen X, Luo J, Wang F, Liu G, Zhu H, et al. PVDF grafted Gallic acid to enhance the hydrophilicity and antibacterial properties of PVDF composite membrane. Sep Purif Technol. 2021;259:118127; https://doi.org/10.1016/j.seppur.2020.118127
  • [10] Kawai, H. The piezoelectricity of poly (vinylidene Fluoride). Jpn J Appl Phys. 1969;8:975–6; https://doi.org/10.1143/JJAP.8.975
  • [11] Boutouyrie P, Tropeano Anne I, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients. Hypertension. 2002;39:10–5; https://doi.org/10.1161/hy0102.099031
  • [12] Kimoto E, Shoji T, Shinohara K, Hatsuda S, Mori K, Fukumoto S, et al. Regional arterial stiffness in patients with type 2 diabetes and chronic kidney disease. J Am Soc Nephrol. 2006;17:2245; https://doi.org/10.1681/ASN.2005101038
  • [13] Nilsson PM. Reducing the risk of stroke in elderly patients with hypertension. Drugs Aging. 2005;22:517–24; https://doi.org/10.2165/00002512-200522060-00005
  • [14] Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105:1652–60; https://doi.org/10.1152/japplphysiol.90549.2008
  • [15] Lederle FA, Larson JC, Margolis KL, Allison MA, Freiberg MS, Cochrane BB, et al. Abdominal aortic aneurysm events in the women's health initiative: cohort study. BMJ. 2008;337:a1724; https://doi.org/10.1136/bmj.a1724
  • [16] Glasser SP. Hypertension, hypertrophy, hormones, and the heart. Am Heart J. 1998;135:S16–20; https://doi.org/10.1053/hj.1998.v135.86973
  • [17] Aoun S, Blacher J, Safar ME, Mourad JJ. Diabetes mellitus and renal failure: effects on large artery stiffness. J Hum Hypertens. 2001;15:693–700; https://doi.org/10.1038/sj.jhh.1001253
  • [18] Cruickshank K, Riste L, Anderson Simon G, Wright John S, Dunn G, Gosling Ray G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance. Circulation. 2002;106:2085–90; https://doi.org/10.1161/01.CIR.0000033824.02722.F7
  • [19] Larivière R, Lebel M. Endothelin-1 in chronic renal failure and hypertension. Can J Physiol Pharmacol. 2003;81:607–21; https://doi.org/10.1139/y03-012
  • [20] Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76; https://doi.org/10.1016/j.bsbt.2015.08.002
  • [21] Falde EJ, Yohe ST, Colson YL, Grinstaff MW. Super-hydrophobic materials for biomedical applications. Biomaterials. 2016;104:87–103; https://doi.org/10.1016/j.biomaterials.2016.06.050
  • [22] Khlyustova A, Cheng Y, Yang R. Vapor-deposited functional polymer thin films in biological applications. J Mater Chem B. 2020;8(31):6588–609; https://doi.org/10.1039/D0TB00681E
  • [23] Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, et al. Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C. 2009;113:9921–27; https://doi.org/10.1021/jp901284d
  • [24] Leenaerts O, Partoens B, Peeters FM. Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B. 2009;79:235440; https://doi.org/10.1103/PhysRevB.79.235440
  • [25] George N, Chandra J, Mathiazhagan A, Joseph R. High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes. Compos Sci Technol. 2015;116:33–40; https://doi.org/10.1016/j.compscitech.2015.05.008
  • [26] Rahman MA, Tong GB, Kamaruddin NH, Wahab FA, Hamizi NA, Chowdhury ZZ, et al. Effect of graphene infusion on morphology and performance of natural rubber latex/graphene composites. J Mater Sci Mater Electron. 2019;30:12888–94; https://doi.org/10.1007/s10854-019-01650-0
  • [27] Francis LF, Grunlan JC, Sun J, Gerberich WW. Conductive coatings and composites from latex-based dispersions. Colloids Surf. 2007;311:48–54; https://doi.org/10.1016/j.colsurfa.2007.08.026
  • [28] Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJJC, van Kats JP, et al. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets – Relevance for tissue engineering. Tissue Eng. 2007;13:1501–11; https://doi.org/10.1089/ten.2006.0279
  • [29] Mavrilas D, Missirlis Y. An approach to the optimization of preparation of bioprosthetic heart valves. J Biomech. 1991;24:331–9; https://doi.org/10.1016/0021-9290(91)90351-M
  • [30] Misfeld M, Sievers HH. Heart valve macro- and microstructure. Philos Trans R Soc Lond B Biol Sci. 2007;362:1421–36; https://doi.org/10.1098/rstb.2007.2125
  • [31] Jin SH, Park YB, Yoon KH. Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Compos Sci Technol. 2007;67:3434–41; https://doi.org/10.1016/j.compscitech.2007.03.013
  • [32] Rafiei H, Abbasian M, Yegani R. Polyvinylidene fluoride as a neat and the synthesized novel membranes based on PVDF/polyvinyl pyrrolidone polymer grafted with TiO2 nanoparticles through RAFT method for water purification. Iran Polym J. 2021;30:769–80; https://doi.org/10.1007/s13726-021-00928-7
  • [33] Hanke T, Charitos EI, Stierle U, Robinson D, Gorski A, Sievers HH, et al. Factors associated with the development of aortic valve regurgitation over time after two different techniques of valve-sparing aortic root surgery. J Thorac Cardiovasc Surg. 2009;137:314–9; https://doi.org/10.1016/j.jtcvs.2008.08.006
  • [34] Marlinda AR, Kamaruddin NH, Fadilah AW, Said, M, Hamizi, NA, Johan, MR. Simple dispersion of graphene incorporated rubber composite for resistive pressure sensor application. Polym. Eng. Sci. 2021; 61: 1476–1484; https://doi.org/10.1002/pen.25668
  • [35] Verplanck N, Coffinier Y, Thomy V, Boukherroub R. Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett. 2007;2:577; https://doi.org/10.1007/s11671-007-9102-4
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7fd9870-ced4-4f52-8ed3-d88ac0cc19b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.