Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Various burn-in procedures have been greatly used to screen weak items and reduce warranty costs. This paper proposes a new burn-in model for heterogeneous items with non-renewing two-dimensional warranty. All failures within burn-in and warranty are assumed to be repaired through the minimal repair. Then we screen the items according to the failure information of the items during burn-in. We establish a cost-based model to optimize the mean total cost of each item put into the market. We demonstrate that the optimal burn-in time or usage rate should reach its upper bound under some conditions. In practice, the reliability and mean total cost of an item may be random due to the uncertainty of parameters in the model. Therefore, we also propose a Bayesian method to calculate the mean total cost and optimal burn-in policy of an item, which fully considers the uncertainty of parameters in the model. An example is also given to demonstrate the proposed burn-in model and Bayesian method.
Czasopismo
Rocznik
Tom
Strony
art. no. 186824
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
autor
- School of Mathematics and Statistics, Xidian University, China
autor
- College of Sciences, Hebei University of Science and Technology, China
autor
- School of Mathematics and Statistics, Xidian University, China
Bibliografia
- 1. Almalki SJ, Nadarajah S. Modifications of the Weibull distribution: A review. Reliability Engineering and System Safety 2014; 124: 32-55, https://doi.org/10.1016/j.ress.2013.11.010.
- 2. Andrzejczak K, Bukowski L. A method for estimating the probability distribution of the lifetime for new technical equipment based on expert judgement. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2021;23(4):757-769, https://doi.org/10.17531/ein.2021.4.18.
- 3. Ascher H, Feingold H. Repairable Systems Reliability: Modelling, Inference, Misconceptions and Their Causes. New York: Marcel Dekker, 1984.
- 4. Attardi L, Guida M, Pulcini G. A mixed Weibull regression model for the analysis of automotive warranty data. Reliability Engineering and System Safety, 2005;87(2):265-273, https://doi.org/ 10.1016/ j.ress.2004.05.003.
- 5. Blischke WR, Karim MR, Murthy DNP. Warranty Data Collection and Analysis. London: Springer; 2011. https://doi.org/10.1007/978-0-85729-647-4
- 6. Block HW, Savits TH. Burn-in. Statistical Science 1997; 12: 1-19, http://www.jstor.org/stable /2246262. https://doi.org/10.1214/ss/1029963258
- 7. Cha. On a better burn-in procedure. Journal of Applied Probability 2000; 37: 1099-1103, https://doi.org/10.1239/jap/1014843087.
- 8. Cha JH, Badía FG. An information-based burn-in procedure for minimally repaired items from mixed population. Applied Stochastic Models in Business and Industry 2016; 32(4): 511-525, https://doi.org /10.1002/asmb.2176.
- 9. Cha JH, Finkelstein M. Stochastic intensity for minimal repairs in heterogeneous populations. Journal of Applied Probability 2011; 48: 868-876, https://doi.org/10.1239/jap/1316796921.
- 10. Chen Y, Yuan T, Joo Bae SJ, Kuo Y. Two-level differential burn-in policy for spatially heterogeneous defect units in semiconductor manufacturing. Computers & Industrial Engineering 2021; 162: 107768, https://doi.org/10.1016/j.cie.2021.107768.
- 11. Dai A, Wei G, Wang D, He Z, He S. The opportunity study of PM strategy for secondhand products sold with a two-dimensional warranty. Reliability Engineering & System Safety 2021; 214: 107699, https://doi.org/10.1016/j.ress.2021.107699.
- 12. Dong F, Liu Z, Wu Y, Hao J. A multi-stage risk-adjusted control chart for monitoring and early-warning of products sold with two-dimensional warranty. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2018;20(2):300-307, https://doi.org/10.17531/ein.2018.2.17.
- 13. Finkelstein M, Cha JH. Stochastic Modeling for Reliability: Shocks, Burn-in and Heterogeneous populations. London: Springer; 2013. https://doi.org/10.1007/978-1-4471-5028-2
- 14. Gupta SK, Bhattacharya D. Non-parametric estimation of bivariate reliability from incomplete two-dimensional warranty data. Reliability Engineering & System Safety 2022; 222: 108385, https://doi.org/10.1016/j.ress.2022.108385.
- 15. Hamada MS, Wilson AG, Reese CS, Martz HF. Bayesian Reliability. London: Springer; 2008. https://doi.org/10.1007/978-0-387-77950-8
- 16. Hu J, Sun Q, Ye Z, Ling X. Sequential degradation-based burn-in test with multiple periodic inspections. Frontiers of Engineering Management 2021; 8: 519-530, https://doi.org/10.1007/s42524 -021-0166-0.
- 17. Iskandar BP, Murthy DNP. Repair-replace strategies for two-dimensional warranty policies. Mathematical and Computer Modelling, 2003; 38(11): 1233-1241, https://doi.org/10.1016/S0895 -7177(03)90125-7.
- 18. Jensen F, Petersen NE. Burn-in. New York: John Wiley; 1982.
- 19. Kuo W, Kuo Y. Facing the headaches of early failures: a state-of-the-art review of burn-in decisions. Proceedings of the IEEE 1983; 71: 1257-1266, https://doi.org/10.1109/PROC.1983.12763.
- 20. Kwon YI, Keats JB. Bayesian burn-in procedures for limited failure populations. International Journal of Production Research 2002; 40(11): 2547-2555, https://doi.org/10.1080/00207540210125470.
- 21. Li X, Liu Z, Wang Y, Li M. Optimal burn-in strategy for two-dimensional warranted products considering preventive maintenance. International Journal of Production Research 2019; 57(17): 5414-5431, https://doi.org/10.1080/00207543.2018.1526419.
- 22. Lone S A, Panahi H. Estimation procedures for partially accelerated life test model based on unified hybrid censored sample from the Gompertz distribution. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2022;24(3): 427-436, https://doi.org/10.17531/ein.2022.3.4.
- 23. Majeske K D. A non homogeneous poisson process predictive model for automobile warranty claims. Reliability Engineering and System Safety, 2007;92(2):243-251, https://doi.org/10.1016/j.ress. 2005.12.004.
- 24. Martz HF, Waller RA. Bayesian Reliability Analysis. New York: Wiley, 1982.
- 25. Mi J. Warranty policies and burn-in. Naval Research Logistics 1997; 44: 199-209, https://doi.org /10.1002/(SICI)1520-6750(199703)44:2<199::AID-NAV4>3.0.CO;2-4.
- 26. Mitra A. Warranty parameters for extended two-dimensional warranties incorporating consumer preferences. European Journal of Operational Research 2021; 291: 525-535, https://doi.org/10.1016 /j.ejor.2019.12.035.
- 27. Perlstein D, Jarvis WH, Mazzuchi TA. Bayesian calculation of cost optimal burn-in test duration for mixed exponential populations. Reliability Engineering & System Safety 2001; 72: 265-273, https://doi.org/10.1016/S0951-8320(01)00025-4.
- 28. Rai B, Singh N. Customer rush near warranty expiration limit, and nonparametric hazard rate es timation from known mileage accumulation rates. IEEE Transactions on Reliability, 2006;55(3): 480-489, https://doi.org/10.1109/TR.2006.879648.
- 29. Saleh J H, Tikayat Ray A, Zhang K S, Churchwell J S. Maintenance and inspection as risk factors in helicopter accidents: Analysis and recommendations. PLoS ONE, 2019;14(2): e0211424. https:// doi.org/10.1371/journal.pone.0211424.
- 30. Shafiee M, Finkelstein M, Zuo M. Optimal burn-in and preventive maintenance warranty strategies with time-dependent maintenance costs. IIE Transactions 2013; 45(9): 1024-1033, https://doi.org /10.1080/0740817X.2013.768784.
- 31. Shaked M, Shanthikumar J. Stochastic Orders. London: Springer; 2007. https://doi.org/10.1007/978-0-387-34675-5
- 32. Sheu SH, Chien YH. Optimal burn-in time to minimize the cost for general repairable products sold under warranty. European Journal of Operational Research 2005; 163(2): 445-461, https://doi.org /10.1016/j.ejor.2003.06.043.
- 33. Shuto S, Amemiya T. Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation. Reliability Engineering and System Safety 2022, https://doi.org/10.1016/j.ress.2022.108516.
- 34. Ulusoy SK, Mazzuchi TA, Perlstein D. Bayesian calculation of optimal burn in time using the joint criteria of cost and delivered reliability. Quality and Reliability Engineering International 2011; 27(4): 569-580, https://doi.org/10.1002/qre.1167.
- 35. Wang L, Pei Z, Zhu H, Liu B. Optimising extended warranty policies following the two-dimensional warranty with repair time threshold. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2018;20(4):523-530, https://doi.org/10.17531/ein.2018.4.3.
- 36. Wang X, Xie W. Two-dimensional warranty: a literature review. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2018; 232(3):284-307, https://doi.org /10.1177/1748006X17742776.
- 37. Wei Y, Liu S, Ling X, Shen L. Optimal burn-in policy for mixed population of products under two-dimensional combination warranty. Applied Stochastic Models in Business and Industry 2022; 38(4): 651-676, https://doi.org/10.1002/asmb.2680.
- 38. Wu CC, Chou CY, Huang C. Optimal burn-in time and warranty length under fully renewing combination free replacement and pro-rata warranty. Reliability Engineering & System Safety 2007; 92(7): 914-920, https://doi.org/10.1016/j.ress.2006.05.017.
- 39. Ye ZS, Xie M, Tang LC, Shen Y. Degradation-based burn-in planning under competing risks. Technometrics 2012; 54(2): 159-168, https://doi.org/10.1080/00401706.2012.676946.
- 40. Ye ZS, Murthy DNP, Xie M, Tang LC. Optimal burn-in for repairable products sold with a two-dimensional warranty. IIE Transactions 2013; 45: 164-176, https://doi.org/10.1080/0740817X. 2012.677573.
- 41. Yuan T, Kuo Y. Bayesian analysis of hazard rate, change point, and cost-optimal burn-in time for electronic devices. IEEE Transactions on Reliability 2010; 59(1): 132-138, https://doi.org/10.1109 /TR.2010.2040776.
- 42. Yuan T, Bae SJ, Zhu XY. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns. Reliability Engineering & System Safety 2016; 155: 55-63, https://doi.org/10.1016/j.ress.2016.04.019.
- 43. Yun WY, Lee YW, Ferreira L. Optimal burn-in time under cumulative free replacement warranty. Reliability Engineering and System Safety 2002; 78: 93-100. https://doi.org/10.1016/S0951-8320 (02)00049-2.
- 44. Zaharia SM. The methodology of fatigue lifetime prediction and validation based on accelerated reliability testing of the rotor pitch links. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2019;21(4):638-644, https://doi.org/10.17531/ein.2019.4.13.
- 45. Zhang Z, He S, He Z, Wang D. A systematic warranty-reliability-price decision model for two-dimensional warranted products with heterogeneous usage rates. Computers & Industrial Engineering 2022; 163: 107820, https://doi.org/10.1016/j.cie.2021.107820.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7f15634-a087-47eb-b9e6-83e67a516edf