PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DNA recognition using Novel Deep Learning Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
DNA, a significant physiological biometric, is present in all human cells like hair, blood, and skin. This research introduces a new approach called the Deep DNA Learning Network (DDLN) for person identification based on their DNA. This novel Machine Learning model is designed to gather DNA chromosomes from an individual’s parents. The model’s flexibility allows it to expand or contract and has the capability to determine one or both parents of an individual using the provided chromosomes. Notably, the DDLN model offers quick training in comparison to traditional deep learning methods. The study employs two real datasets from Iraq: the Real Iraqi Dataset for Kurds (RIDK) and the Real Iraqi Dataset for Arabs (RIDA). The outcomes demonstrate that the proposed DDLN model achieves an Equal Error Rate (EER) of 0 for both datasets, indicating highly accurate performance.
Słowa kluczowe
Twórcy
  • Department of Electrical Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Technical Engineering College of Mosul, Northern Technical University, Iraq
  • Technical Engineering College of Mosul, Northern Technical University, Iraq
Bibliografia
  • [1] S. Minaee, A. Abdolrashidi, H. Su, M. Bennamoun, and D. Zhang, “Biometrics recognition using deep learning: A survey,” Artificial Intelligence Review, pp. 1-49, 2023. [Online]. Available: https://doi.org/10.1007/s10462-022-10237-x.
  • [2] J. M. Butler, “Recent advances in forensic biology and forensic DNA typing: Interpol review 2019-2022,” Forensic Science International: Synergy, vol. 6, p. 100311, 2023. [Online]. Available: https://doi.org/10.1016/j.fsisyn.2022.100311.
  • [3] T. Sabhanayagam, V. P. Venkatesan, and K. Senthamaraikannan, “A comprehensive survey on various biometric systems,” International Journal of Applied Engineering Research, vol. 13, no. 5, pp. 2276-2297, 2018. [Online]. Available: https://doi.org/10.1016/j.matpr.2021.07.005.
  • [4] A. K. Singh and A. Mohan, Handbook of multimedia information security: Techniques and applications. Springer, 2019. [Online]. Available: https://doi.org/10.1007/978-3-030-15887-3.
  • [5] S. Dargan and M. Kumar, “A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities,” Expert Systems with Applications, vol. 143, p. 113114, 2020. [Online]. Available: https://doi.org/10.1016/j.eswa.2019.113114.
  • [6] D. H. Fernando, B. Kuhaneswaran, and B. Kumara, “A systematic literature review on the application of blockchain technology in biometric analysis focusing on DNA,” Handbook of Research on Technological Advances of Library and Information Science in Industry 5.0, pp. 77-99, 2023. [Online]. Available: https://doi.org/10.4018/978-1-6684-4755-0.ch005.
  • [7] M. Kumar and A. K. Tiwari, “Computational intelligence techniques for biometric recognition: A review,” in Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE), 2019. [Online]. Available: http://dx.doi.org/10.2139/ssrn.3350260.
  • [8] W. L. Woo, N. O. Ephraim, F. P. Obinna, O. Nwosu, B. O. Jessy, and R. R. Al-Nima, “A scalable algorithm for interpreting DNA sequence and predicting the response of killer t-cells in systemic lupus erythematosus patients,” International Journal of Bioinformatics and Intelligent Computing, vol. 1, no. 1, pp. 48-71, 2022. [Online]. Available: https://www.researchlakejournals.com/index.php/IJBIC/article/view/141/119.
  • [9] M. A. S. Al-Hussein, R. R. O. Al-Nima, and W. L. Woo, “Applying the deoxyribonucleic acid (DNA) for people identification,” Journal of Harbin Institute of Technology, vol. 54, no. 8, p. 2022, 2022. [Online]. Available: http://doi.org/10.11720/JHIT.54082022.13.
  • [10] S. Tripathi and A. K. Pandey, “Identifying DNA sequence by using stream matching techniques,” in 2016 International Conference System Modeling & Advancement in Research Trends (SMART). IEEE, 2016, pp. 334-338. [Online]. Available: http://doi.org/10.1109/SYSMART.2016.7894545.
  • [11] A. Afolabi and O. Akintaro, “Design of DNA based biometric security system for examination conduct,” Journal of Advances in Mathematics and Computer Science, vol. 23, no. 6, pp. 1-7, 2017. [Online]. Available: http://doi.org/10.9734/JAMCS/2017/27251.
  • [12] B. N.-F. Law, “Application of signal processing for DNA sequence compression,” IET Signal Processing, vol. 13, no. 6, pp. 569-580, 2019. [Online]. Available: https://doi.org/10.1049/iet-spr.2018.5392.
  • [13] D. Primorac and M. Schanfield, Forensic DNA applications: An interdisciplinary perspective. CRC Press, 2023. [Online]. Available: https://doi.org/10.4324/9780429019944.
  • [14] D. Palma and P. L. Montessoro, “Biometric-based human recognition systems: an overview,” Recent Advances in Biometrics, pp. 1-21, 2022. [Online]. Available: https://doi.org/10.5772/intechopen.101686.
  • [15] D. Abbott, “Finding Somerton man: How DNA, ai facial reconstruction, and sheer grit cracked a 75-year-old cold case,” IEEE Spectrum, vol. 60, no. 4, pp. 22-30, 2023. [Online]. Available: https://doi.org/10.1109/MSPEC.2023.10092395.
  • [16] J. Johnson, R. Chitra, and A. A. Bamini, “An efficient fingerprint analysis and DNA profiling from the same latent evidence for the forensic applications,” in 2022 Smart Technologies, Communication and Robotics (STCR). IEEE, 2022, pp. 1-6. [Online]. Available: https://doi.org/10.1109/STCR55312.2022.10009376.
  • [17] A. Michaleas, P. Fremont-Smith, C. Lennartz, and D. O. Ricke, “Parallel computing with DNA forensics data,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2022, pp. 1-7. [Online]. Available: https://doi.org/10.1109/HPEC55821.2022.9926352.
  • [18] S. Guan, Y. Qian, T. Jiang, M. Jiang, Y. Ding, and H. Wu, “Mv-hrkm: A multiple view-based hypergraph regularized restricted kernel machine for predicting DNA-binding proteins,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 2, pp. 1246-1256, 2022. [Online]. Available: https://doi.org/10.1109/TCBB.2022.3183191.
  • [19] Y. He, Q. Zhang, S. Wang, Z. Chen, Z. Cui, Z.-H. Guo, and D.-S. Huang, “Predicting the sequence specificities of DNA-binding proteins by DNA finetuned language model with decaying learning rates,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 1, pp. 616-624, 2022. [Online]. Available: https://doi.org/10.1109/TCBB.2022.3165592.
  • [20] Q. Yu, X. Zhang, Y. Hu, S. Chen, and L. Yang, “A method for predicting DNA motif length based on deep learning,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 1, pp. 61-73, 2022. [Online]. Available: https://doi.org/10.1109/TCBB.2022.3158471.
  • [21] Y. Liang, Z. Yin, H. Liu, H. Zeng, J. Wang, J. Liu, and N. Che, “Weakly supervised deep nuclei segmentation with sparsely annotated bounding boxes for DNA image cytometry,” IEEE/ACM transactions on computational biology and bioinformatics, 2021. [Online]. Available: https://doi.org/10.1109/TCBB.2021.3138189.
  • [22] R. R. O. Al-Nima, “Signal processing and machine learning techniques for human verification based on finger textures,” Ph.D. dissertation, Newcastle University, 2017. [Online]. Available: https://theses.ncl.ac.uk/jspui/handle/10443/3982.
  • [23] S. Bengio and J. Mariéthoz, “The expected performance curve: a new assessment measure for person authentication,” 2003. [Online]. Available: file:///C:/Users/Toshiba/Downloads/rr03-84%20(4).pdf.
  • [24] A. Tharwat, “Classification assessment methods,” Applied computing and informatics, vol. 17, no. 1, pp. 168-192, 2020. [Online]. Available: https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/html
  • [25] Y. Liu and E. Shriberg, “Comparing evaluation metrics for sentence boundary detection,” in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 4. IEEE, 2007, pp. IV-185. [Online]. Available: https://doi.org/10.1109/ICASSP.2007.367194.
  • [26] M. Paluszek, S. Thomas, M. Paluszek, and S. Thomas, “Matlab machine learning toolboxes,” Practical MATLAB Deep Learning: A Project-Based Approach, pp. 25-41, 2020. [Online]. Available: https://doi.org/10.1007/978-1-4842-5124-9 2.
  • [27] A. S. Anaz, M. Y. Al-Ridha, and R. R. O. Al-Nima, “Signal multiple encodings by using autoencoder deep learning,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 1, pp. 435-440, 2023. [Online]. Available: https://doi.org/10.11591/eei.v12i1.4229.
  • [28] A. S. Anaz, R. R. O. Al-Nima, and M. Y. Al-Ridha, “Multi-encryptions system based on autoencoder deep learning network,” Solid State Technology, vol. 63, no. 6, pp. 3632-3645, 2020. [Online]. Available: http://www.solidstatetechnology.us/index.php/JSST/article/view/3495.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7f00e4d-0e05-43b2-b501-b628757c6c1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.