Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The increase of maritime international trade, especially of dangerous liquid cargos led to a significant increase of the number of sea-going ships. Their operation poses a real threat to the maritime environment both as a result of terminal events with transported dangerous liquid cargos and emissions of harmful products from fuels burnt by ship power systems. Because of those there is a need to undertake actions to prevent such occurrences using formal, legal and utilitarian tools. Philosophy of research methodology and rationalization of actions in compliance with international directives have been shown. The article presents the guidelines of the IMO Resolution MEPC 231(65) on preventing air pollution with carbon dioxide from ships. Design Energy Efficiency Index (EEDI) for a new ship was given as well as Energy Efficiency Operational Indicator (EEOI) determined for conventional ships after a completed voyage was defined and interpreted. A model of a Ship Energy Efficiency Management Plan (SEEMP) of a chosen ship has been constructed taking into account possible actions aimed at obtaining the highest power efficiency of the ship at sea voyage. Conclusions have been drawn and possible directions of further actions have been established.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
631--637
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
- Maritime University of Szczecin, Poland
autor
- Maritime University of Szczecin, Poland
autor
- Kaliningrad State University, Russia
Bibliografia
- 1. Adamkiewicz, A., Anczykowska A. (2017). LNG okrętowym paliwem przyszłości w basenie Morza Bałtyckiego. Przegląd Gazowniczy, 1, pp. 18-21.
- 2. Adamkiewicz, A., Bartoszewski, M., Kendra, M. (2016). Analysis of Consequences of Using Gas Fuels for Running Auxiliary Ship Boilers in The Light of Contemporary Environmental Protection Requirements. Management Systems in Production Engineering, 3(23), pp. 183-190.
- 3. Adamkiewicz, A., Cydejko, J. (2015). Analiza układów napędowych zbiornikowców LNG w aspekcie spełnienia wymagań strefy kontroli emisji spalin. Rynek Energii, 3(118), pp. 80-86.
- 4. Adamkiewicz, A., Przybyła, M. (2017). A Concept of a Marine Power Plant Supplied With Natural Gas With A Reduced CO2 Emission Index. Journal of Machine Construction and Maintenance, 3(106), pp. 75-82.
- 5. Adamkiewicz, A., Zeńczak, W. (2016) Methanol As An Ecological Fuel For Sea-Going Vessels. Fachhochschule Stralsund: Symposium Nutzung Regenerativer Energiequellen Und Wasserstofftechnik Stralsund., 22, pp. 170-174.
- 6. Blanco-Davis, Z. (2016). Life Cycle Assessment as a complementary utility to regulatory measures of shipping energy efficiency. Ocean engineering,128, pp. 94-104.
- 7. Herdzik, J. (2017). Uwagi do eksploatacyjnego wskaźnika efektywności energetycznej statku. Autobusy N6, pp. 209-213.
- 8. IMO (2012A): Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships, Avaiable at: http://www.imo.org [Accessed: May 2018].
- 9. IMO (2012B): Guidelines on Survey and Certification of the Energy Efficiency Design Index (EEDI), Avaiable at: http://www.imo.org [Accessed: May 2018].
- 10. IMO (2013): Guidelines for Calculation of Reference Lines for Use with the Energy Efficiency Design Index (EEDI), Avaiable at: http://www.imo.org [Accessed: May 2018]
- 11. Mundt, T, Köpke, M. (2011). MEPC 62: Energy Efficiency Design Index verabschiedet, Schiff & Hafen, 9, pp 12-15.
- 12. Perera, M. (2016): Emission control based energy efficiency measures in ship operations. Applied Ocean Research, 60, pp 29-46.
- 13. PRS (2018): Wytyczne Dotyczące Efektywności Energetycznej Statków, Avaiable at: https://www.prs.pl [Accessed: April 2018].
- 14. Walczak, A. (2018). Moja międzynarodowa służba morska. Szczecin: Zakład Usług Poligraficznych i Wydawniczych s.c.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7ef418d-e2f5-4190-9e34-54bd9d78cda7