PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Cadmium (II) by Adsorption Using Water Hyacinth (Eichhornia crassipes) Dried Biomass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using water hyacinth as a phytoremediation agent produces abundant biomass due to periodic harvesting in the system. One of the alternative uses of water hyacinth biomass can be a bio-sorbent to absorb metal contamination in the waters. This study aims to determine the quality of activated water hyacinth bio-sorbent, potentially reducing metal cadmium (Cd). The research was conducted from January to April 2022. The results showed that the parameters of water content, iodine absorption, and methylene blue in water hyacinth bio-sorbent had met the quality standard of activated carbon based on SNI No. 06-3730-1995. In contrast, the ash content still did not. In water, hyacinth stem bio-sorbents (stems + ZnCl2 and stems 300 °C + ZnCl2) obtained higher ash content (25.87 and 73.30%) than the ash content of water hyacinth root and leaf bio-sorbent with the same activation treatment. The optimum adsorption capacity (Qe) for the roots + ZnCl2 occurred at a contact time of 45 minutes which was 8.13 mg/g with an absorption efficiency (Ef) of 34.20%. For the root 300 °C + ZnCl2, the optimum adsorption capacity and absorption efficiency occurred at a contact time of 8 hours, namely 9.08 mg/g and 38.66%, respectively. The optimum adsorption capacity and absorption efficiency of the leaves + ZnCl2 occurred at a contact time of 4 hours, namely 7.63 mg/g and 32.12%, respectively. Meanwhile, at the leaves 300 °C + ZnCl2, the optimum adsorption capacity and absorption efficiency occurred at a contact time of 8 hours with a value of Qe = 11.84 mg/g and Ef = 49.35%.
Słowa kluczowe
Rocznik
Strony
246--253
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Student of Program Study of Environmental Management, Post Graduate Program, Pakuan University, Bogor, Indonesia
  • Biology Program Study, Faculty of Mathematic and Natural Science, Pakuan University, Bogor, Indonesia
autor
  • Research Centre for Limnology and Water Resources, National Research and Innovation Agency (BRIN), Indonesia
Bibliografia
  • 1. Akhmad A.B., Susanti, D., Purwaningsih, H. 2012. Pengaruh temperatur karbonisasi dan konsentrasi zink klorida (ZnCl2) terhadap luas permukaan karbon aktif eceng gondok. Jurnal Teknik Material dan Metalurgi, 10(3).
  • 2. Emilia, I., Suheryanto, Hanafiah, Z. 2013. Distribusi logam kadmium dalam air dan sedimen di Sungai Musi Kota Palembang. Jurnal Penelitian Sains, 16(2C).
  • 3. Estiaty, L.M. 2012. Kesetimbangan dan kinetika adsorpsi ion Cu2+ pada Zeolit-H. Jurnal Riset Geologi dan Pertambangan, 2(2).
  • 4. Hendrawan, Y., Sutan, S.M., Kreative Y.R. 2017. Pengaruh variasi suhu karbonisasi dan konsentrasi aktivator terhadap karakteristik karbon aktif dari ampas tebu (Bagasse) menggunakan activating agent NaCl. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 5(3).
  • 5. Igwe, J.C., Abia A.A. 2006. Review: A bioseparation process for removing heavy metals from wastewater using bio-sorbents. African Journal of Biotechnology, 5(12).
  • 6. Istarani, F., Pandebesie, E.S. 2014. Studi dampak arsen (As) dan kadmium (Cd) terhadap penurunan kualitas lingkungan. Jurnal Teknik Pomits, 3(1)
  • 7. Itodo A.U., Abdulrahman F.W., Hassan L.G., Maigandi S.A., Itodo H.U. 2010. Application of methylene blue and iodine adsorption in the measurement of specific surface area by four acid and salt-treated activated carbons. New York Science Journal, 3(5).
  • 8. Junary, E., Pane, J.P., Herlina, N. 2015. Pengaruh suhu dan waktu karbonisasi terhadap nilai kalor dan karakteristik pada pembuatan bioarang berbahan baku pelepah aren (Arenga pinnata). Jurnal Teknik Kimia USU, 4(2).
  • 9. Mayasari, Azhari, R., Saleh, C. Yusuf, B. 2017. Pemanfaatan serbuk eceng gondok (Eichornia Crassipes) teraktivasi dengan sistem kantong celup sebagai adsorben penjerap ion logam kadmium (Cd). Jurnal Atomik, 2(2).
  • 10. Mo ́denes, A.N., Espinoza-Quin ̃ ones, F.R., Borba, C.E., Trigueros, D.E., Lavarda, F.L., Abugderah, M.M., Kroumov, A.D. 2011. Adsorption of Zn(II) and Cd(II) ions in the batch system by using the Eichhornia crassipes. Journal of Water Sci. Technol., 64(9).
  • 11. Murithi, G., Onindo, C.O., Wambu, E.W., Muthakia, G.K. 2014. Removal of cadmium(II) ions from water by adsorption using water hyacinth (Eichhornia crassipes) biomass. Journal of BioRes., 9(2).
  • 12. Nuria, F.I., Anwar, M. Purwaningsih, D.Y. 2020. Pembuatan karbon aktif dari eceng gondok. Jurnal Tecnoscienza 5(1).
  • 13. Rahayu, T.E.P.S, Dwityaningsih, R., Ulikaryani. 2022. Pengaruh waktu karbonisasi terhadap kadar air dan abu serta kemampuan adsorpsi arang tempurung Nipah teraktivasi asam klorida. Jurnal Infotekmesin, 13(1).
  • 14. Rahmadani, N., Kurniawati, K. 2017. Sintesis dan karakterisasi karbon teraktivasi asam dan basa berbasis mahkota nanas. Prosiding Seminar Nasional Kimia dan Pembelajarannya Jurusan Kimia FMIPA UM.
  • 15. Rakhmania, C.D., Khaeronnisa, I. Ismuyanto, B., Juliananda, Himma, N.F. 2017. Adsorpsi ion kalsium menggunakan biomassa eceng gondok (Eichhornia Crassipes) diregenerasi HCl. Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, 1(1).
  • 16. Sahara, E., Sulihingtyas, W.D., Mahardika, I.P.A.S. 2017. Pembuatan dan karakterisasi arang aktif dari batang tanaman gumitir (Tagetes Erecta) yang diaktivasi dengan H3PO4. Jurnal Kimia 11(1).
  • 17. Sangkota, V.D.A, Supriadi & Said, I. 2017. Pengaruh aktivasi kimia arang tanaman eceng gondok (Eichhornia Crassipes) terhadap adsorpsi logam timbal (Pb). Jurnal Akademika Kimia, 6(1).
  • 18. Setyanto, K. & Warniningsih. 2011. Pemanfaatan eceng gondok untuk membersihkan kualitas air sungai-sungai Gajahwong Yogyakarta. Jurnal Teknologi Technoscientia, 4(1).
  • 19. Setyowati, S., Suprapti, N.H., Wiryani, E. 2015. Kandungan logam tembaga (Cu) dalam eceng gondok (Eichhornia crassipes), perairan dan sedimen berdasarkan tata guna lahan di aekitar Sungai Banger Pekalongan.
  • 20. Shah, K., Palmer, A. 2018. Physico-chemical characteristics of activated carbon prepared from coconut shell. Int. J. Latest Eng. Res. Appl., 3(1).
  • 21. SNI 06-3730-1995 Arang aktif teknis. Badan Standardisasi Nasional – BSN.
  • 22. Srisa-ard, S. 2014. Preparation of activated carbon from Sindora siamensis seed and Canarium sublatum guillaumin fruit for methylene blue adsorption. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 5(4).
  • 23. Stefhany, C.A., Sutisna, M., Pharmawati, K. 2013. Fitoremediasi phospat dengan menggunakan tumbuhan eceng gondok (Eichhornia crassipes) pada limbah cair industri kecil pencucian pakaian (laundry). Jurnal Institut Teknologi Nasional, 1(1).
  • 24. Sulaiman, N.H., Malau, L.A., Lubis, F.H., Harahap, N.B., Manalu, F.R., Kembaren, A. 2017. Pengolahan tempurung kemiri sebagai karbon aktif dengan variasi aktivator asam fosfat. Jurnal Einstein, 5(2).
  • 25. Téllez, T.R., López, E.M.R, Granado, G.L., Pérez, E.A., López, R.M. & Guzmán, G.M.S. 2008. The Water Hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions, 3(1), 42-53
  • 26. Usman, A.F., Budimawan, Budi, P. 2015. Kandungan logambBerat Pb-Cd dan kualitas air di Perairan Biringkassi, Bungoro, Pangkep. Jurnal Agrokompleks, 4(9).
  • 27. Zhou, Y.Z.L., Li, M., Sun, Y. 2001. Effect of moisture in microporous activated carbon on the adsorption of methane. Journal of Carbon N., 39.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7eeaae6-a762-46db-a1b5-5c55e0df06b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.