PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial and seasonal variability of sub-daily water temperature dynamics in the lowland agricultural catchment of the Wkra River

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concentrates on seasonal and spatial variations of sub-daily water temperature dynamics in lowland agricultural streams. Temperature monitoring was carried out in 24 sampling sites distributed along the tributaries of the Wkra River during the hydrological year 2021. Statistical analysis of the obtained data documented the highest water temperature dynamics in the morning, from 5:00 to 9:00 CEST, while the lowest - from 14:00 to 18:00 CEST. Seasonally, greater water dynamics were noted in the winter, expressed by a coefficient of variation reaching up to 100%. Spatially, the highest dynamics occurred in sites with the lowest proportion of riparian vegetation, while the lowest dynamics was related to higher catchment area. In the winter, the minimum daily values were recorded most frequently in the morning hours, while maximum values in the afternoon. A similar pattern was observed in the summer, but with much lower dispersion of the relative frequencies. It was found that in the winter, the dominant influence on temperature dynamics was exerted in the upstream catchment area, while in the summer, a negative relationship with riparian shade was marked. The findings suggest that the presence of riparian vegetation reduces diurnal dynamics of water temperature and is simultaneously extremely important in prolonging the duration of optimum fluctuation, responsible for the proper development of poikilothermic organisms.
Wydawca
Rocznik
Tom
Strony
153--163
Opis fizyczny
Bibliogr. 43 poz., mapa, tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geography and Regional Studies, Krakowskie Przedmieście St, 30, 00–927 Warsaw, Poland
  • University of Warsaw, Faculty of Geography and Regional Studies, Krakowskie Przedmieście St, 30, 00–927 Warsaw, Poland
Bibliografia
  • Armstrong, J.B. et al. (2021) “The importance of warm habitat to the growth regime of cold-water fishes,” Nature Climate Change, 11(4), pp. 354–361. Available at: https://doi.org/10.1038/s41558-021-00994-y.
  • Bae, M.J. et al. (2016) “Small weirs, big effects: Disruption of water temperature regimes with hydrological alternation in a Mediterranean stream,” River Research and Applications, 32(3), pp. 309–319. Available at: https://doi.org/10.1002/rra.2871.
  • Barbarossa, V. et al. (2021) “Threats of global warming to the world’s freshwater fishes,” Nature Communications, 12(1), 1701. Available at: https://doi.org/10.1038/s41467-021-21655-w.
  • Bartnik, A. and Tomalski, P. (2018) “Diurnal variations of the basic physico-chemical characteristics of a small urban river – the Sokołówka in Łódź – a case study,” Acta Scientiarum Polonorum Formatio Circumiectus, 17(3), pp. 23–38. Available at: https://doi.org/10.15576/ASP.FC/2018.17.3.23.
  • Beauregard, D. et al. (2013) “Consequences of circadian fluctuations in water temperature on the standard metabolic rate of Atlantic salmon parr (Salmo salar),” Canadian Journal of Fisheries and Aquatic Science, 70(7), pp. 1072–1081. Available at: https://doi.org/10.1139/cjfas-2012-0342.
  • Bonacina, L. et al. (2023) “Effects of water temperature on freshwater macroinvertebrates: A systematic review,” Biological Reviews, 98 (1), pp. 191–221. Available at: https://doi.org/10.1111/brv.12903.
  • Broadmeadow, S.B. et al. (2011) “The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout,” River Research and Applications, 27(2) pp. 226–237. Available at: https://doi.org/10.1002/rra.1354.
  • Caissie, D. (2006) “The thermal regime of rivers: A review,” Freshwater Biology, 51(8), pp. 1389–1406. Available at: https://doi.org/10.1111/j.1365-2427.2006.01597.x.
  • Coulter, D.P. et al. (2016) “Species-specific effects of sub-daily temperature fluctuations on consumption, growth and stress responses in two physiologically similar fish species,” Ecology of Freshwater Fish, 25(3), pp. 465–475. Available at: https://doi.org/10.1111/eff.12227.
  • Das, N. et al. (2022) “Analysis of the spatio-temporal variation of the thermal pattern of River Ganges in proximity to Varanasi, India,” Journal of the Indian Society of Remote Sensing, 50(6), pp. 1119–1134. Available at: https://doi.org/10.1007/s12524-022-01514-x.
  • Davies-Colley, R.J. and Payne, G.W. (2023) “Influence of the impoundment of the Three Gorges Reservoir on hydrothermal conditions for fish habitat in the Yangtze River,” Environmental Science and Pollution Research, 30(4), pp. 10995–11011. Available at: https://doi.org/10.1007/s11356-022-22930-z.
  • Dugdale, S.J. et al. (2018) “Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes,” Science of the Total Environment, 610, pp. 1375–1389. Available at: https://doi.org/10.1016/j.scitotenv.2017.08.198.
  • Dunham, J. et al. (2005) Measuring stream temperature with digital data loggers: A user’s guide. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. Available at: https://doi.org/10.2737/RMRS-GTR-150.
  • Fuller, M.R. et al. (2022) “Riparian vegetation shade restoration and loss effects on recent and future stream temperatures,” Restoration Ecology, 30(7), e13626. Available at: https://doi.org/10.1111/rec.13626.
  • Graf, R. and Aghelpour, P. (2021) “Daily river water temperature prediction: A comparison between neural network and stochastic techniques,” Atmosphere, 12(9), 1154. Available at: https://doi.org/10.3390/atmos12091154.
  • Graf, R. and Wrzesiński, D. (2019) “Relationship between water temperature of Polish rivers and large-scale atmospheric circulation,” Water, 11(8), 1690. Available at: https://doi.org/10.3390/w11081690.
  • Herbich, P. et al. (2013) Metodyka określania zasobów dyspozycyjnych wód podziemnych w obszarach bilansowych z uwzględnieniem potrzeb jednolitych bilansów wodnogospodarczych. Poradnik metodyczny [Methodology for the determination of groundwater disposable resources in balance areas taking into account the needs of water-economy unitary balances. Methodological guide]. Warszawa: Ministerstwo Środowiska.
  • Jackson, F.L. et al. (2017) “Development of spatial regression models for predicting summer river temperatures from landscape characteristics: Implications for land and fisheries management,” Hydrological Processes, 31(6), pp. 1225–1238. Available at: https://doi.org/10.1002/hyp.11087.
  • Jobling, M. (1996) “Temperature and growth: Modulation of growth rate via temperature,” in C.M. Wood and D.G. McDonald (eds.) Global warming: Implications for freshwater and marine fish. Cambridge: Cambridge University Press (Society for Experimental Biology Seminar Series), pp. 225–253. Available at: https://doi.org/10.1017/CBO9780511983375.010.
  • Johnson, M.F., Wilby, R.L. and Toone, J.A. (2014) “Inferring air–water temperature relationships from river and catchment properties,” Hydrological Processes, 28(6), pp. 2912–2928. Available at: https://doi.org/10.1002/hyp.9842.
  • Kail, J. et al. (2021) “Woody buffer effects on water temperature: The role of spatial configuration and daily temperature fluctuations,” Hydrological Processes, 35(1), e14008. Available at: https://doi.org/10.1002/hyp.14008.
  • Kirk, M.A. and Rahel, F.J. (2022) “Air temperatures over-predict changes to stream fish assemblages with climate warming compared with water temperatures,” Ecological Applications, 32(1), e02465. Available at: https://doi.org/10.1002/eap.2465.
  • Krajenbrink, H.J. et al. (2022) “Macroinvertebrate and diatom community responses to thermal alterations below water supply reservoirs,” River Research and Applications, 38(3), pp. 595–612. Available at: https://doi.org/10.1002/rra.3922.
  • Lechnio, J. and Malinowska, E. (2021) “Charakterystyka makroregionów i mezoregionów [Characteristic of macroregions and mezoregions],” in A. Richling et al. (eds.) Regionalna Geografia Polski [Regional Geography of Poland]. Poznań: Bogucki Wydawnictwo Naukowe, pp. 276–286.
  • Łaszewski, M. (2018) “Diurnal water temperature dynamics in lowland rivers: A case study from Central Poland,” Journal of Water and Land Development, 36, pp. 89–97. Available at: https://doi.org/10.2478/jwld-2018-0009.
  • Łaszewski, M. (2020) “The effect of environmental drivers on summer spatial variability of water temperature in Polish lowland watercourses,” Environmental Earth Sciences, 79(10), 244. Available at: https://doi.org/10.1007/s12665-020-08981-w.
  • Morash, A.J. et al. (2018) “The importance of incorporating natural thermal variation when evaluating physiological performance in wild species,” Journal of Experimental Biology, 221(14), jeb164673. Available at: https://doi.org/10.1242/jeb.164673.
  • Mugwanya, M. et al. (2022) “Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review,” Aquaculture and Fisheries, 7(3), pp. 223–243. Available at: https://doi.org/10.1016/j.aaf.2021.12.005.
  • Nobriga, M.L. et al. (2021) “Coldwater fish in a warm water world: Implications for predation of salmon smolts during estuary transit,” Ecology and Evolution, 11(15), pp. 10381–10395. Available at: https://doi.org/10.1002/ece3.7840.
  • Oligny-Hébert, H. et al. (2015) “Effects of diel temperature fluctuation on the standard metabolic rate of juvenile Atlantic salmon (Salmo salar): Influence of acclimation temperature and provenience,” Canadian Journal of Fisheries and Aquatic Sciences, 72(9), pp. 1306–1315. Available at: https://doi.org/10.1139/cjfas-2014-0345.
  • Poole, G.C. and Berman, C.H. (2001) “Pathways of human influence on water temperature dynamics in stream channels,” Environmental Management, 27(6), pp. 787–802. Available at: https://www.krisweb.com/biblio/gen_usepa_pooleetal_2000_pathways.pdf (Accessed: February 10, 2023).
  • S2GLC (2017) Sentinel-2 Global Land Cover. Available at: https://s2glc.cbk.waw.pl/ (Accessed: February 10, 2023).
  • Shrestha, R.R. and Pesklevits, J.C. (2023) “Modelling spatial and temporal variability of water temperature across six rivers in Western Canada,” River Research and Applications, 39(2), pp. 200–213. Available at: https://doi.org/10.1002/rra.4072.
  • Takeuchi, H. et al. (2021) “Environmental factors affecting Edwardsiella ictaluri-induced mortality of riverine ayu, Plecoglossus altivelis (Temminck & Schlegel),” Journal of Fish Diseases, 44(8), pp. 1065–1074. Available at: https://doi.org/10.1111/jfd.13368.
  • Tassone, S.J. et al. (2023) “Increasing heatwave frequency in streams and rivers of the United States,” Limnology and Oceanography Letters, 8(2), pp. 295–304. Available at: https://doi.org/10.1002/lol2.10284.
  • Turunen, J. et al. (2021) “Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams,” Freshwater Biology, 66(4), pp. 785–798. Available at: https://doi.org/10.1111/fwb.13678.
  • Waldner, K. et al. (2021) “Effect of water temperature on the morbidity of Tetracapsuloides bryosalmonae (Myxozoa) to brown trout (Salmo trutta) under laboratory conditions,” Journal of Fish Diseases, 44(7), pp. 1005–1013. Available at: https://doi.org/10.1111/jfd.13361.
  • Wody Polskie (2010) Mapa podziału hydrograficznego Polski [Map of hydrographic division of Poland]. Warszawa: Państwowe Gospodarstwo Wodne Wody Polskie. Available at: https://dane.gov.pl/pl/dataset/2167,mapa-podzialu-hydrograficznego-polski-w-skali-110 (Accessed: February 10, 2023).
  • Wrzesiński, D. (2017) “Typologia reżimu odpływu rzek w Polsce w podejściu nadzorowanym i nienadzorowanym [Typology of the river regime in Poland with supervised and unsupervised approach],” Badania Fizjograficzne, 68, pp. 253–264. Available at: https://doi.org/10.14746/bfg.2018.9.19.
  • Wrzesiński, D. and Graf, R. (2022) “Temporal and spatial patterns of the river flow and water temperature relations in Poland,” Journal of Hydrology and Hydromechanics, 70(1), pp. 12–29. Available at: https://doi.org/10.2478/johh-2021-0033.
  • Yang, D. et al. (2021) “Heat flux, water temperature and discharge from 15 northern Canadian rivers draining to Arctic Ocean and Hudson Bay,” Global and Planetary Change, 204, 103577. Available at: https://doi.org/10.1016/j.gloplacha.2021.103577.
  • Żelazny, M. et al. (2018) “Water temperature fluctuation patterns in surface waters of the Tatra Mts., Poland,” Journal of Hydrology, 564, pp. 824–835. Available at: https://doi.org/10.1016/j.jhydrol.2018.07.051.
  • Zhao, F. et al. (2022) “New insights into eutrophication management: Importance of temperature and water residence time,” Journal of Environmental Sciences, 111, pp. 229–239. Available at: https://doi.org/10.1016/j.jes.2021.02.033.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7dc8565-19e1-4160-8735-a11efb3e07cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.