Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a comparative analysis of the creation of digital bathymetric models using multispectral bands. The case analyzed involves images acquired from low altitude using an unmanned aerial vehicle in an area of shallow inland waters. The use of an underwater photogrammetric network enables georeferencing of the datasets at a level no worse than 0.013 m (mean RMSE). The green and red bands make it possible to generate a dense point cloud in the full bottom area and create DBMs, the accuracy of which is examined on the basis of 22 bottom check points and the obtained accuracies for the RMS error are no worse than 0.24 m. The results of this study indicate that the green and red bands can be used for bathymetry acquisition in shallow and very shallow waters, which can be applied to work that requires accurate bathymetry reconstruction in these types of water bodies.
Rocznik
Tom
Strony
98--107
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
- 1. Acharya, B.S., Bhandari, M., Bandini, F., Pizarro, A., Perks, M., Joshi, D.R., Wang, S., Dogwiler, T., Ray, R.L., Kharel, G. & Sharma, S. (2021) Unmanned aerial vehicles in hydrology and water management: Applications, challenges, and perspectives. Water Resources Research 57 (11), doi: 10.1029/2021WR029925.
- 2. Agrafiotis, P., Skarlatos, D., Georgopoulos, A. & Karantzalos, K. (2019) Shallow water bathymetry mapping from UAV imagery based on machine learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2/W10), pp. 9–16, doi: 10.5194/ isprs-archives-XLII-2-W10-9-2019.
- 3. Alevizos, E. & Alexakis, D.D. (2022) Monitoring shortterm morphobathymetric change of nearshore seafloor using drone-based multispectral imagery. Remote Sensing 14 (23), doi: 10.3390/rs14236035.
- 4. Bartolucci, L.A., Robinson, B.F. & Silva, L.F. (1977) Field measurements of the spectral response of natural waters. Photogrammetric Engineering and Remote Sensing 43 (5), pp. 595–598.
- 5. Berra, E.F. & Peppa, M.V. (2020) Advances and challenges of UAV SFM MVS photogrammetry and remote sensing: Short review. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W12-2020, pp. 267–272, doi: 10.5194/isprsarchives-xlii-3-w12-2020-267-2020.
- 6. Caballero, I. & Stumpf, R.P. (2020) Towards routine mapping of shallow bathymetry in environments with variable turbidity: Contribution of sentinel-2A/B satellites mission. Remote Sensing 12 (3), doi: 10.3390/rs12030451.
- 7. Caballero, I., Stumpf, R.P. & Meredith, A. (2019) Preliminary assessment of turbidity and chlorophyll impact on bathymetry derived from Sentinel-2A and Sentinel-3A satellites in South Florida. Remote Sensing 11 (6), doi: 10.3390/ rs11060645.
- 8. Dev, P.J. & Shanmugam, P. (2017) New theoretical formulation for the determination of radiance transmittance at the water-air interface. Optics Express 25 (22), 27086, doi: 10.1364/oe.25.027086.
- 9. DJI (2024) DJI Phantom 4 RTK specification. [Online]. Available from: https://www.dji.com/pl/p4-multispectral/ specs [Accessed: May 30, 2024].
- 10. Hirschmuller, H. (2008) Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2), pp. 328– 341, doi: 10.1109/TPAMI.2007.1166.
- 11. Jaud, M., Delsol, S., Urbina-Barreto, I., Augereau, E., Cordier, E., Guilhaumon, F., Le Dantec, N., Floc’h, F. & Delacourt, C. (2024) Low-tech and low-cost system for high-resolution underwater RTK photogrammetry in coastal shallow waters. Remote Sensing 16 (1), doi: 10.3390/ rs16010020.
- 12. Kasvi, E., Salmela, J., Lotsari, E., Kumpula, T. & Lane, S.N. (2019) Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology 333, pp. 180–197, doi: 10.1016/j.geomorph.2019.02.017.
- 13. Kislik, C., Dronova, I. & Kelly, M. (2018) UAVs in support of algal bloom research: A review of current applications and future opportunities. Drones 2 (4), 35, doi: 10.3390/drones2040035.
- 14. Lewicka, O., Specht, M., Stateczny, A., Specht, C., Dardanelli, G., Brčić, D., Szostak, B., Halicki, A., Stateczny, M. & Widźgowski, S. (2022) Integration data model of the bathymetric monitoring system for shallow waterbodies using UAV and USV platforms. Remote Sensing 14 (16), doi: 10.3390/rs14164075.
- 15. Li, Y., Masschelein, B., Vandebriel, R., Vanmeerbeeck, G., Luong, H., Maes, W., Van Beek, J., Pauly, K., Jayapala, M., Charle, W. & Lambrechts, A. (2022) Compact VNIR snapshot multispectral airborne system and integration with drone system. In L.E. Busse & Y. Soskind (Eds), Photonic Instrumentation Engineering IX (Vol. 12008), SPIE, doi: 10.1117/12.2608183.
- 16. Lubczonek, J., Kazimierski, W., Zaniewicz, G. & Lacka, M. (2022) Methodology for combining data acquired by unmanned surface and aerial vehicles to create digital bathymetric models in shallow and ultra-shallow waters. Remote Sensing 14 (1), doi: 10.3390/rs14010105.
- 17. Lubczonek, J. & Zaniewicz, G. (2023) Application of filtering techniques to smooth a surface of hybrid digital bathymetric model. Remote Sensing 15 (19), doi: 10.3390/ rs15194737.
- 18. Manessa, M.D.M., Handoko, D., Pamungkas, F.D., Syamsuddin, R.P., Sutarko, D., Yogiswara, A.S., Mukhtar, M.K. & Supriatna, S. (2022) Preliminary result of drone UAV derived multispectral bathymetry in coral reef ecosystem: A case study of pemuteran beach. International Journal on Advanced Science, Engineering and Information Technology 12 (4), pp. 1512–1516, doi: 10.18517/ ijaseit.12.4.16107.
- 19. Muzirafuti, A., Barreca, G., Crupi, A., Faina, G., Paltrinieri, D., Lanza, S. & Randazzo, G. (2020) The contribution of multispectral satellite image to shallow water bathymetry mapping on the Coast of Misano Adriatico, Italy. Journal of Marine Science and Engineering 8 (2), doi: 10.3390/jmse8020126.
- 20. Panlilio, K., Pedido, S.M., Ramos, R. & Tamondong, A. (2020) Bathymetric mapping of shallow waters in Lian, Batangas using unmanned aerial vehicle (UAV). 40th Asian Conference on Remote Sensing, ACRS 2019. October 14‒18, Daejeon, Korea, pp. 1–10.
- 21. Partama, I.G., Kanno, A., Ueda, M., Akamatsu, Y., Inui, R., Sekine, M., Yamamoto, K., Imai, T. & Higuchi, T. (2018) Removal of Water-Surface Reflection Effects with a Temporal Minimum Filter for UAV-Based Shallow-Water Photogrammetry: Removal of Water-Surface Reflection Effects for UAV-Photogrammetry. Earth Surface Processes and Landforms 43, doi:10.1002/esp.4399.
- 22. Pix4D (2024) PIX4D Mapper Supported Drones. [Online]. Available from: https://www.pix4d.com/supported-drones/ [Accessed: May.
- 23. Rossi, L., Mammi, I. & Pelliccia, F. (2020) UAV-derived multispectral bathymetry. Remote Sensing 12 (23), 3897, doi: 10.3390/rs12233897.
- 24. Strecha, C., Bronstein, A., Bronstein, M. & Fua, P. (2012) LDAHash: Improved matching with smaller descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (1), pp. 66–78, doi: 10.1109/ TPAMI.2011.103.
- 25. Sun, G., Huang, W., Chen, P., Gao, S. & Wang, X. (2018) Advances in UAV-based multispectral remote sensing applications. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery 49, pp. 1–17, doi: 10.6041/j.issn.1000-1298.2018.03.001.
- 26. Szostak, B., Specht, M., Burdziakowski, P., Stateczny, A., Specht, C. & Lewicka, O. (2023) Methodology for performing bathymetric measurements of shallow waterbodies using an UAV, and their processing based on the SVR algorithm. Measurement 223, 113720, doi: 10.1016/j.measurement.2023.113720.
- 27. Toodesh, R., Verhagen, S. & Dagla, A. (2021) Prediction of changes in seafloor depths based on time series of bathymetry observations: Dutch North Sea case. Journal of Marine Science and Engineering 9 (9), 931, doi: 10.3390/ jmse9090931.
- 28. Triggs, B., Mclauchlan, P.F., Hartley, R.I. & Fitzgibbon, A.W. (2000) Bundle adjustment ‒ A modern synthesis. In. B. Triggs, A. Zisserman & R. Szeliski (Eds), Vision Algorithms: Theory and Practice, pp. 298–372. Berlin Heidelberg: Springer.
- 29. Trinh, H.L., Kieu, H.T., Pak, H.Y., Pang, D.S.C., Tham, W.W., Khoo, E. & Law, A.W.K. (2024) A comparative study of multi-rotor unmanned aerial vehicles (UAVs) with spectral sensors for real-time turbidity monitoring in the coastal environment. Drones 8 (2), doi: 10.3390/drones8020052.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7dc052d-666c-4470-bac3-84dfdf0678e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.