Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Reconfigurable double inverted pendulum applied to the modelling of human robot motion
Rocznik
Tom
Strony
12--20
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, Warsaw, 00-665, www: tmr.meil.pw.edu.pl/web/Pracownicy/mgrMagdalena-Zurawska.
autor
- Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, Warsaw, 00-665, www: tmr.meil.pw.edu.pl/web/Pracownicy/inz.- Maksymilian-Szumowski.
autor
- Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, Warsaw, 00-665, www: tmr.meil.pw.edu.pl/web/Pracownicy/prof.-TeresaZielinska.
Bibliografia
- [1] Hirai K. Hirose M., Haikawa Y., Takenada T., ”The development of Honda humanoid robot”. In: 1998 IEEE International Conference on Robotics and Automation, Belgium, 1998, 1321–1226. DOI: 10.1109/ROBOT.1998.677288.
- [2] Kajita S., Kanehiro F., Kaneko K., Yokoi K., Hirukawa H., ”The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation”. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawai, 2001, 239–246. DOI: 10.1109/IROS.2001.973365.
- [3] Blickhan R., Full R.J., ”Similarity in multilegged locomotion: Bouncing like a monopode”, Journal of Comparative Physiology, vol. 173, no. 5, 1993, 509–517. DOI: 10.1007/BF00197760.
- [4] Wensing P.M., Orin D.E., ”High-Speed Humanoid Running Through Control with a 3D-SLIP Model”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013, 5134–5140. DOI:10.1109/IROS.2013.6697099.
- [5] Komura T., Nagano A., Leung H., Shinagawa Y., ”Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum”, IEEE Ttransactions on Biomedical Engineering, vol. 52, no. 9, 2005, 1502–1513.DOI:10.1109/TBME.2005.851530.
- [6] Kwon T., Hodgins J., ”Control Systems for Human Running using an Inverted Pendulum Model and a Reference Motion Capture Sequence”, Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2010, 1–11.
- [7] Hettich G., Assländer L., Gollhofer A., Mergner T., ”Human hip–ankle coordination emergingfrom multisensory feedback control”, Human Movement Science, 2014, vol. 14, 123–146. DOI: 10.1016/j.humov.2014.07.004.
- [8] Tripathi G.N., Wagatsuma H., ”PCA-Based Algorithms to Find Synergies for Humanoid Robot Motion Behavior”,International Journal of Humanoid Robotics, vol. 13, no. 2, 2016, 1–21. DOI: /10.1142/S0219843615500371.
- [9] Pratt J., Carff J., Drakunov S., Goswami A., ”Recovery Capture Point: A Step toward Humanoid Push”. In: Proceedings of the 6th IEEERAS International Conference on Humanoid Robots(Humanoids 2006), 2006, 200–207. DOI:10.1109/ICHR.2006.321385.
- [10] Tedrake R., Kuindersma S., Deits R., Miura K., ”A closed-form solution for real-time ZMP gait generation and feedback stabilization”. In: IEEE-RAS 15th International Conference onHumanoid Robots (Humanoids 2015), 2015, Seoul, Korea, 936–940. DOI: 10.1109/HUMANOIDS.2015.7363473.
- [11] Pontzer H., Holloway J.H. 4th, Raichlen D.A., Lieberman D.E., ”Control and function of arm swingin human walking and running”, Journal of Experimental Biology, vol. 212, no. 4, 2009, 523–534.DOI: 10.1242/jeb.024927.
- [12] http://health.uottawa.ca/biomech/, Dempster’s Body Segment Parameter Data for 2-D Studies, December 2016.
- [13] Kajita S., Tani K., ”Study of dynamic biped locomotion on rugged terrain – derivation and application of the linear inverted pendulum model”. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, 1991, 1405–1411. DOI: 10.1109/ROBOT.1991.131811.
- [14] Blickhan R., Full R.J., ”Similarity in multilegged locomotion: Bouncing like a monopode”, Journal of Comparative Physiology, vol. 173, no. 5, 1993,509–517.DOI: 10.1007/BF00197760.
- [15] Stasse O., Verrelst B, Wieber P.B., et al., ”Modular Architecture for Humanoid Walking Pattern Prototyping and Experiments”, Advanced Robotics, vol. 22, no. 6–7, 2008, 589-611. DOI: 10.1163/156855308X305236.
- [16] Kajita S., Kanehiro F., Kaneko K., Yokoi K., Hirukawa H. ”The 3D linear inverted pendulummode: a simple modeling for a biped walking pattern generation”. In: Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, 2001, 239–246. DOI: 10.1109/IROS.2001.973365.
- [17] Loram I.D., Lakie M., ”Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements”, Journal of Physiology, vol. 540, no. 3, 2002, 1111–1124. DOI: 10.1113/jphysiol.2001.013077.
- [18] Zielinska T., ”Coupled oscillators as gait rhytm generators of a two-legged machine”, Biological Cybernetics, vol. 74, no. 3, 1996, 263–273. DOI:10.1007/BF00652227.
- [19] Ames A. D. ”Human-Inspiered Control of Bipedal Walking Robots”, IEEE Transactions on Automatic Control, vol. 59, no. 5, 2014, 115–1130. DOI:10.1109/TAC.2014.2299342.
- [20] McGrath M., Howard D., Baker R., ”The strengths and weaknesses of inverted pendulum models of human walking”, Gait and Posture, vol. 41, no. 2, 2015, 389–394. DOI:10.1016/j.gaitpost.2014.10.023.
- [21] Kuo A. D., ”The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective”, Human Movement Science, vol. 26, no. 4, 2007, 617–656. DOI:10.1016/j.humov.2007.04.003.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7d74993-9f59-4c39-bdfc-52b889bf6ed5