PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of filler added friction stir welding parameters for improving corrosion resistance of dissimilar aluminium alloys 5052 and 6082 joints

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aluminium alloys 5052 and 6082 are extensively used in manufacturing lighter structural members, having improved strength and resistance to corrosion. Magnesium (Mg) and Chromium (Cr) powder were the filler materials selected for enhanced corrosion protection properties in this investigation. Friction stir welding (FSW) process parameters viz., spindle speed, welding speed, shoulder penetration, the centre distance between the holes and filler ratio are used to forecast the minimum corrosion rate from different weld regions of AA5052-AA6082 dissimilar joints. Response surface methodology based on a central composite design was used to evolve the mathematical models and estimate dissimilar FSW joints’ corrosion rates. Response optimization shows that the minimum corrosion rate was achieved by the welding parameters of spindle speed 1000 rev/min, welding speed 125 mm/min, holes spacing of 2 mm and filler ratio 95% of Mg and 5% of Cr.
Rocznik
Strony
79--95
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Production Engineering, Government College of Technology, Coimbatore, India
autor
  • Department of Production Engineering, Government College of Technology, Coimbatore, India
  • Institute of Materials Joining, Shandong University, Jinan, China
Bibliografia
  • 1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith, P Dawes CJ. Friction stir butt welding (The Welding Institute TWI), 1993, UK patent 9125978.8.
  • 2. Kumar HA, Ramana VV, Pawar M. Experimental study on dissimilar friction stir welding of aluminium alloys (5083-H111 and 6082-T6) to investigate the mechanical properties. IOP Conference Series: Materials Science and Engineering, 330(1), 2018, 012076.
  • 3. Mohan DG, Gopi S. Influence of In-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3(2), 2021, 025023.
  • 4. Gopi S, Mohan DG. Evaluating the welding pulses of various tool profiles in single-pass friction stir welding of 6082-T6 aluminium alloy. Journal of Welding and Joining, 39(3), 2021, 284–294.
  • 5. Rajakumar S, Muralidharan C, Balasubramanian V. Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints. Materials & Design, 32, 2011, 2878-2890.
  • 6. Elatharasan G, Kumar VSS. An experimental analysis and optimization of process parameter on friction stir welding of AA 6061-T6 aluminum alloy using RSM. Procedia Engineering, 64, 2013, 1227–1234.
  • 7. Cho JH, Kim MH, Choi JW. FSW properties of aluminium alloy 5000/6000 for small boat. Journal of Welding and Joining, 32(1), 2014, 34-39.
  • 8. Janeczek A, Tomków J, Fydrych D. The influence of tool shape and process parameters on the mechanical properties of AW-3004 aluminium alloy friction stir welded joints. Materials, 14(12), 2021, 3244.
  • 9. Sasikumar A, Gopi S, Mohan DG. Forecasting process parameters on weld nugget hardness of filler added friction stir welded dissimilar aluminium alloys 5052 and 6082 joints. Journal of Mechanical and Energy Engineering, 5(2), 2021, 103-12.
  • 10. Fu B, Qin G, Li F, Meng X, Zhang J, Wu C. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. Journal of Materials Processing Technology, 2, 2018, 38-47.
  • 11. Mohan DG, Gopi S, Rajasekar V. Effect of induction heated friction stir welding on corrosive behaviour, mechanical properties and microstructure of AISI 410 stainless steel. Indian Journal of Engineering and Materials Sciences, 25(3), 2018, 203-208.
  • 12. Donatus U, Thompson GE, Momoh MI, Maledi NB, Tsai IL, Ferreira RO, Liu Z. Variations in stir zone and thermomechanically affected zone of dissimilar friction stir weld of AA5083 and AA6082 alloys. Transactions of Nonferrous Metals Society of China, 28, 2018, 2410-2418.
  • 13. Bahmani A, Arthanari S, Shin KS. Formulation of corrosion rate of magnesium alloys using microstructural parameters. Journal of Magnesium and Alloys, 8(1), 2020, 134–149.
  • 14. Mohan DG, Tomków J, Gopi S. Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Advances in Materials Science, 21(3), 2021,17-30.
  • 15. Sasikumar A, Gopi S, Mohan DG. Effect of magnesium and chromium fillers on the microstructure and tensile strength of friction stir welded dissimilar aluminium alloys. Materials Research Express, 6(8), 2019, 086580.
  • 16. Kesharwani RK, Panda SK, Pal SK. Multi objective optimization of friction stir welding parameters for joining of two dissimilar thin aluminium sheets. Procedia Materials Science, 6, 2014, 178–187.
  • 17. Mohan DG, Gopi S. Study on the mechanical behaviour of friction stir welded aluminium alloys 6061 with 5052. 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 2017, 147-152.
  • 18. Balamurugan M, Gopi S, Mohan DG. Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Materials Research Express, 8(9), 2021, 096531.
  • 19. Sameer MD, Birru AK. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. Journal of Magnesium and Alloys, 7(2), 2019, 264–271.
  • 20. Mohan DG, Wu CS. A Review on friction stir welding of steels. China Journal of Mechanical Engineering. 34, 2021, 137.
  • 21. Alfattani R, Yunus M, Mohamed AF, Alamro T, Hassan MK. Assessment of the corrosion behavior of friction-stir-welded dissimilar aluminum alloys. Materials, 15(1), 2022.
  • 22. Mohan DG, Gopi S, Rajasekar V. Mechanical and corrosion resistance properties of hybrid-welded stainless steel. Materials Performance, 57(1), 2018, 53–56.
  • 23. Verma S, Gupta M, Misra JP. Optimization of process parameters in friction stir welding of armor-marine grade 7039 aluminium alloy using desirability approach, Materials Research Express, 6(2), 2019, 026505.
  • 24. Fonda RW, Pao PS, Jones HN, Feng CR, Connolly BJ, Davenport AJ. Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456. Material Science Engineering A, 519, 2009, 1-8.
  • 25. Prabhukhot AR. Effect of heat treatment on hardness and corrosion behavior of 6082-T6 aluminium alloy in artificial sea water. International Journal of Materials Science and Engineering, 3, 2015, 287-294.
  • 26. Patil HS, Soman SN. Corrosion behaviour of friction stir welded aluminium alloys AA6082-T6. American Journal of Materials Engineering and Technology, 2, 2014, 29-33.
  • 27. Cho JH, Kim WJ, Lee CG. Evolution of microstructure and mechanical properties duringfriction stir welding of A5083 and A6082. Procedia Engineering, 81, 2014, 2080-2085.
  • 28. Dhanesh G Mohan, Gopi S. Induction assisted friction stir welding: a review. Australian Journal of Mechanical Engineering, 18(1), 2018, 119-123.
  • 29. Zhang Z, Liu YL, Chen JT. Effect of shoulder size on the temperature rise and the material deformation in friction stir welding. International Journal of Advanced Manufacturing Technology, 45, 2009, 889-95.
  • 30. Sakthivel T, Sengar GS, Mukhopadhyay J. Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum. International Journal of Advanced Manufacturing Technology, 43, 2009, 468-73.
  • 31. Dhanesh G Mohan, Gopi S, Sasikumar A. Examining the mechanical and metallurgical properties of single pass friction stir welded dissimilar aluminium alloys tee joints. SVOA Materials Science &Technology, 3(1), 2021, 6–12.
  • 32. Hatamleh O, Singh PM, Garmestani H. Corrosion susceptibility of peened friction stir welded 7075 aluminumalloy joints. Corrosion Science, 51, 2009, 135-43.
  • 33. Surekha K, Murty BS, Prasad Rao K. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminium alloy. Solid State Sciences, 11, 2009, 907-917.
  • 34. Aminzadeh A, Sattarpanah Karganroudi S, Meiabadi MS, Mohan DG, Ba K. A survey of process monitoring using computer-aided inspection in laser-welded blanks of light metals based on the digital twins concept. Quantum Beam Science, 6(2), 2022, 19.
  • 35. Gerlich A, Su P, Yamamoto M, North TH. Material flow and intermixing during dissimilar friction stir welding. Science and Technology of Welding and Joining, 13, 2008, 254–264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7d4aae9-0b66-4fa3-811d-96f22d9c132a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.