Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the nutrients and eutrophication problem are integrated into a nature-based solution by incorporating microalgae-based nutrient removal from wastewater and collecting the residue in an anaerobic digestion plant to produce biogas that is directly exported to an existing gas-fired power plant and closes the bioresource loop. El Burullus lake in Egypt was selected as a case study because it is rich in nutrients and suitable for the integrated system. The theoretical results were promising as for one-hectare, nutrient pollution could be reduced with a total nitrogen removal rate of 4 kg•d-1, a total phosphorus removal rate of 1.1 kg•d-1, and a total COD removal rate of 9.3 kg•d-1. The digester volume corresponding to the biomass produced was 120 m3 per hectare of algae pond and the methane yield () from anaerobic digestion was 73 m3•d-1.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
299--313
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Environmental Engineering, Zagazig University, Zagazig 44519, Egypt
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan 20133, Italy
autor
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan 20133, Italy
autor
- Department of Architecture and Urban Studies (DASTU), Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan 20133, Italy
autor
- Environmental Engineering, Zagazig University, Zagazig 44519, Egypt
Bibliografia
- 1. Ali, E.M. 2011. Impact of drain water on water quality and eutrophication status of Lake Burullus, Egypt, a southern Mediterranean lagoon. African Journal of Aquatic Science, 36(3), 267–277. Retrieved from https://tandfonline.com/doi/abs/10.2989/16085914.2011.636897
- 2. Boelee, N.C., Temmink, H., Janssen, M., Buisman, C.J., Wijffels, R.H., & Boelee et al., 2011. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925–5933.
- 3. Clippinger, J.N., & Davis, R.E. 2019. Techno-economic analysis for the production of algal biomass via closed photobioreactors: future cost potential evaluated across a range of cultivation system designs. National Renewable Energy.
- 4. Craggs, R.J., Sutherland, D.L., Campbell, H. 2012. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24(3), 329–337. Retrieved from https://link.springer.com/article/10.1007/s10811-012-9810-8
- 5. Darzins, A., Pienkos, P., Edye, L. 2020. Current status and potential for algal biofuels production. IEA Bioenergy Task 39. Retrieved from http://task39.org/files/2013/05/IEA-Task-39-Current-Status-and-Potential-of-Algal-biofuels0.pdf
- 6. Demory, Combe, C., Hartmann, P., Talec, A., Pruvost, E., Hamouda, R. Demory et al., 2018. Supplementary material from “How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments”. Retrieved from https://rs.figshare.com/collections/supplementary_material_from_how_do_microalgae_perceive_light_in_a_high-rate_pond_towards_more_realistic_lagrangian_experiments_/4100834
- 7. Diab, F., Lan, H., Zhang, L., Ali, S. 2015. An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part One: What Is the Optimum City? Energies, 8(7), 1-19. Retrieved from https://mdpi.com/1996-1073/8/7/6926/pdf
- 8. El-Geziry, E.A. 2019. water and nutrients budget of lake Burullus, Egypt. Blue Biotechnology Journal.
- 9. El-Zeiny, A.M., & El-Kafrawy, S. B. 2017. Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. The Egyptian Journal of Remote Sensing and Space Science, 20. Retrieved from https://sciencedirect.com/science/article/pii/s1110982316300680
- 10. Frank, E.D., Han, J., Palou-Rivera, I., Elgowainy, A., Wang, M. 2012. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environmental Research Letters, 7(1), 014030. Retrieved from https://greet.es.anl.gov/files/ch4-nox-algal-biofuels
- 11. Gilmore, S., Saleem, A., Dewan, A. 2015. Effectiveness of DOS (Dark-Object Subtraction) method and water index techniques to map wetlands in a rapidly urbanising megacity with Landsat 8 data. Retrieved from http://ceur-ws.org/vol-1323/paper41.pdf
- 12. Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G., Loosdrecht, M.C. 1999. Activated Sludge Model No.2d, ASM2D. Water Science and Technology, 39(1), 165-182. Retrieved from https://sciencedirect.com/science/article/abs/pii/s0273122398008294
- 13. Ji, M.K., Yun, H.S., Park, S., Lee, H., Park, Y.T., Bae, S., Choi, J. 2015. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Bioresource Technology, 179, 624-628. Retrieved from https://sciencedirect.com/science/article/pii/s0960852414017994
- 14. Khalil, M.T. 2018. Fisheries of Egyptian Delta Coastal Wetlands; Burullus Wetland Case Study. Retrieved from https://link.springer.com/chapter/10.1007/698_2017_204
- 15. Marazzi, F., Bellucci, M., Ficara, E., Mezzanotte, V. 2020. Interactions between Microalgae and Bacteria in the Treatment ofWastewater from Milk Whey Processing. Water.
- 16. Park et al. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42. Retrieved from https://science-direct.com/science/article/pii/s0960852410011636
- 17. Rittmann, M.Z. 2001. Environmental Biotechnology. McGraw Hill. Retrieved 9 30, 2020
- 18. Rodhe, W. 1969. Crystallization of eutrophication concepts in northern europe. Retrieved from https://eurekamag.com/research/026/348/026348261.php
- 19. Rogers, J.N., Rosenberg, J.N., Guzman, B.J., Oh, V.H., Mimbela, L.E., Ghassemi, A., Donohue, M.D. 2014. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research-Biomass Biofuels and Bioproducts, 4, 76-88. Retrieved from https://sciencedirect.com/science/article/pii/s2211926413001008
- 20. Shalby, A., Elshemy, M., Elshemy, M., Zeidan, B.A. 2019. Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt. Environmental Science and Pollution Research, 1-22. Retrieved from https://link.springer.com/article/10.1007/s11356-019-06105-x
- 21. Slade, R., Bauen, A. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass & Bioenergy, 53, 29–38. Retrieved from https://sciencedirect.com/science/article/pii/s096195341200517x
- 22. Uggetti, E., Passos, F., Passos, F., Solé, M., Garfí, M., Ferrer, I. 2017. Recent Achievements in the Production of Biogas from Microalgae. Waste and Biomass Valorization, 8(1), 129–139. Retrieved from https://link.springer.com/article/10.1007/s12649-016-9604-3
- 23. Wang, Ma, A. 2001. Application of Remote Sensing Techniques in Monitoring and Assessing the Water Quality of Taihu Lake. Bulletin of Environmental Contamination and Toxicology.
- 24. Ward, A.J., Lewis, D., Green, F. 2014. Anaerobic digestion of algae biomass: A review. Algal Research-Biomass Biofuels and Bioproducts, 5(1), 204–214. Retrieved from https://sciencedirect.com/science/article/pii/s2211926414000216
- 25. Whitton, R., Mével, A. L., Pidou, M., Ometto, F., Villa, R., Jefferson, B. 2016. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371–378. Retrieved from https://sciencedirect.com/science/article/pii/s0043135415304528
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7d2257c-a80a-43b3-bb89-2c2a67c50b40