PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comprehensive Overview of the Impacting Factors on a Lithium-Ion-Battery’s Overall Efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This comprehensive overview of the impacting factors on lithium-ion-battery’s (LIB) overall efficiency presents the most relevant influencing factors on a battery’s performance. Dissected into their respective short-term and long-term influences, the working principles behind the efficiency influencing factors are presented. With a strong focus on battery characterisation, charge-profiles and battery management systems (BMSs), the authors present results of their own practical research with a detailed literary analysis, allowing a broad coverage of the complex topic. Finally, the authors present a principle model that indicates the interactions be-tween the different involved components of the battery.
Wydawca
Rocznik
Strony
9--28
Opis fizyczny
Bibliogr. 89 poz., rys.
Twórcy
  • Bochum University of Applied Sciences, Electric Vehicle Institute, Germany
  • Bochum University of Applied Sciences, Electric Vehicle Institute, Germany
  • Bochum University of Applied Sciences, Electric Vehicle Institute, Germany
  • University of Wuppertal, Chair of Electric Mobility and Energy Storage Systems, Germany
  • University of Wuppertal, Chair of Electric Mobility and Energy Storage Systems, Germany
  • University of Wuppertal, Chair of Electric Mobility and Energy Storage Systems, Germany
Bibliografia
  • Aiello, O., Crovetti, P. S. and Fiori, F. (2015). Susceptibility to EMI of a Battery Management System IC for Electric Vehicles. In: 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). Presented at the 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015, IEEE, Dresden, Germany, pp. 749–754. doi: 10.1109/ISEMC.2015.7256257.
  • Albatayneh, A., Assaf, M. N., Alterman, D. and Jaradat, M. (2020). Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles. Environmental and Climate Technologies, 24, pp. 669–680. doi: 10.2478/rtuect-2020-0041.
  • Amanor-Boadu, J. M., Guiseppi-Elie, A. and Sánchez-Sinencio, E. (2018a). The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries. Energies, 11(8), p. 2162. doi: 10.3390/en11082162.
  • Amanor-Boadu, J. M., Guiseppi-Elie, A. and Sanchez-Sinencio, E. (2018b). Search for Optimal Pulse Charging Parameters for Li-Ion Polymer Batteries Using Taguchi Orthogonal Arrays. IEEE Transactions on Industrial Electronics, 65(11), pp. 8982–8992. doi: 10.1109/TIE.2018.2807419.
  • Arrhenius, S. A. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4, p. 226. doi: 10.1515/zpch-1889-0116.
  • Barai, A., Uddin, K., Widanage, W. D., McGordon, A. and Jennings, P. (2018). A Study of the Influence of Measurement Timescale on Internal Resistance Characterisation Methodologies for Lithium-ion Cells. Scientific Reports, 8(1), p. 21. doi: 10.1038/s41598-017-18424-5.
  • Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F. and Riu, D. (2013). A Review on Lithiumion Battery Ageing Mechanisms and Estimations for Automotive Applications. Journal of Power Sources, 241, pp. 680–689. doi: 10.1016/j.jpowsour.2013.05.040.
  • Bilansky, J. and Lacko, M. (2020). Design and Simulation of Cyclic Battery Tester. Power Electronics and Drives, 5, pp. 229–241. doi: 10.2478/pead-2020-0017.
  • BU-502: Discharging at High and Low Temperatures [WWW Document]. (2010). Battery Univ. Available at: https://batteryuniversity.com/article/bu-502-discharging-at-high-and-low-temperatures [Accessed 10 Dec. 2021].
  • Burkert, A., Fechtner, H. and Schmuelling, B. (2021). Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany. World Electric Vehicle Journal, 12(1), p. 25. doi: 10.3390/wevj12010025.
  • Cao, J., Schofield, N. and Emadi, A. (2008). Battery Balancing Methods: A Comprehensive Review. In: 2008 IEEE Vehicle Power and Propulsion Conference. Presented at the 2008 IEEE Vehicle Power and Propulsion Conference, pp. 1–6. doi: 10.1109/VPPC.2008.4677669.
  • Daowd, M., Omar, N., Van Den Bossche, P. and Van Mierlo, J. (2011). Passive and Active Battery Balancing Comparison Based on MATLAB Simulation. In: 2011 IEEE Vehicle Power and Propulsion Conference. Presented at the 2011 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, Chicago, IL, USA, pp. 1–7. doi: 10.1109/VPPC.2011.6043010.
  • de Hoog, J., Jaguemont, J., Abdel-Monem, M., Van Den Bossche, P., Van Mierlo, J. and Omar, N. (2018). Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging. Energies, 11(4), p. 804. doi: 10.3390/en11040804.
  • Duan, J., Tang, X., Dai, H., Yang, Y., Wu, W., Wei, X. and Huang, Y. (2020). Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochemical Energy Reviews, 3, pp. 1–42. doi: 10.1007/s41918-019-00060-4.
  • Fechtner, H., Saes, K. H., Fechtner, E., Braun, T. and Schmülling, B. (2016). Clarification of the Training Requirements for Working on Electric Vehicles. International Journal of Advanced Corporate Learning, 9(1), p. 35. doi: 10.3991/ijac.v9i1.5635.
  • Gabbar, H. A., Othman, A. M. and Abdussami, M. R. (2021). Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies, 9(2), p. 28. doi: 10.3390/technologies9020028.
  • Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M. I. and Guerrero-Martinez, M. A. (2014). Battery Equalization Active Methods. Journal of Power Sources, 246, pp. 934–949. doi: 10.1016/j.jpowsour.2013.08.026.
  • Gao, Y., Jiang, J., Zhang, C., Zhang, W., Ma, Z. and Jiang, Y. (2017). Lithium-Ion Battery Aging Mechanisms and Life Model Under Different Charging Stresses. Journal of Power Sources, 356, pp. 103–114. doi: 10.1016/j.jpowsour.2017.04.084.
  • Guenther, L. H., Scholz, T., Pautzke, F., Fechtner, H., Schmuelling, B., Schelte, N., Severengiz, S., Hinz, M. and Bracke, S. (2021). Reliability Engineering of Electric Vehicle Powertrains: Data Collection and Analysis Based on Products in the Usage Phase. In: Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021). Presented at the Proceedings of the 31st European Safety and Reliability Conference. Research Publishing Services, pp. 2573–2580. doi: 10.3850/978-981-18-2016-8_183-cd.
  • Guo, Z., Liaw, B. Y., Qiu, X., Gao, L. and Zhang, C. (2015). Optimal Charging Method for Lithium Ion Batteries Using a Universal Voltage Protocol Accommodating Aging. Journal of Power Sources, 274, pp. 957–964. doi: 10.1016/j.jpowsour.2014.10.185.
  • Hellwig, M., Scholz, T., Pautzke, F. and Tendyra, P. (2020). Das Vernetze Prüflabor NetLab. In: H. Proff, ed., Neue Dimensionen der Mobilität. Springer Fachmedien Wiesbaden, Wiesbaden, pp. 707–715. doi: 10.1007/978-3-658-29746-6_56.
  • Hermann, P., Zhang, C., Kremzow-Tennie, S. and Parzyszek, D. (2019). Das Forschungsprojekt D-See [diːˌsiː] – Durchgängiges Schnellladekonzept für Elektrofahrzeuge 17.
  • Hossain Ahmed, S., Kang, X. and Bade Shrestha, S. O. (2015). Effects of Temperature on Internal Resistances of Lithium-Ion Batteries. Journal of Energy Resources Technology, 137(3), p. 031901. doi: 10.1115/1.4028698.
  • Hu, Y., Iwata, G. Z., Mohammadi, M., Silletta, E. V., Wickenbrock, A., Blanchard, J. W., Budker, D. and Jerschow, A. (2020). Sensitive Magnetometry Reveals Inhomogeneities in Charge Storage and Weak Transient Internal Currents in Li-Ion Cells. Proceedeings of the National Academy of Sciences, 117(20), pp. 10667–10672. doi: 10.1073/pnas.1917172117.
  • Iora, P. and Tribioli, L. (2019). Effect of Ambient Temperature on Electric Vehicles’ Energy Consumption and Range: Model Definition and Sensitivity Analysis Based on Nissan Leaf Data. World Electric Vehicle Journal, 10(1), p. 2. doi: 10.3390/wevj10010002.
  • ISO 12405-4. (2018). ISO 12405-4 Electrically Propelled Road Vehicles - Test Specification for Lithium-Ion Traction Battery Packs and Systems - Part 4: Performance Testing. Geneva, Switzerland.
  • Jochem, P., Szimba, E. and Reuter-Oppermann, M. (2019). How Many Fast-Charging Stations do we need along European Highways? Transportation Research Part D: Transport and Environment, 73, pp. 120–129. doi: 10.1016/j.trd.2019.06.005.
  • Jossen, A., Späth, V., Döring, H. and Garche, J. (1999). Reliable Battery Operation — A Challenge for the Battery Management System. Journal of Power Sources, 84(2), pp. 283–286. doi: 10.1016/S0378-7753(99)00329-8.
  • Juarez-Robles, D., Vyas, A. A., Fear, C., Jeevarajan, J. A. and Mukherjee, P. P. (2020a). Overcharge and Aging Analytics of Li-Ion Cells. Journal of the Electrochemical Society, 167(9), p. 090547. doi: 10.1149/1945-7111/ab9569.
  • Juarez-Robles, D., Vyas, A. A., Fear, C., Jeevarajan, J. A. and Mukherjee, P. P. (2020b). Overdischarge and Aging Analytics of Li-Ion Cells. Journal of the Electrochemical Society, 167(9), p. 090558. doi: 10.1149/1945-7111/aba00a.
  • Kalla, P., Bakhtiarian, N., Grimm, D., Scholz, T., Grafe, D., Peric, S., Bauer, J., Teermann, A. and Pautzke, F. (2021). Energy Management in Metropolitan Emobility Charging Infrastructures EMEL. In: H. Proff, ed., Transforming Mobility What Next?
  • Keil, P. and Jossen, A. (2016). Charging Protocols for Lithium-Ion Batteries and their Impact on Cycle Life—An Experimental Study With Different 18650 High-Power Cells. Journal of Energy Storage, 6, pp. 125–141.
  • Keysight. (2021). SL113XA/SL100XA Series Scienlab Battery Test System – Cell Level. [WWW Document]. Keysight. Available at: https://www.keysight.com/de/de/products/hev-ev-grid-emulators-and-test-systems/scienlab-battery-test-systems/sl1133a-sl100xa-series-scienlab-battery-test-system-cell-level.html [Accessed 13 Dec. 2021].
  • Khan, A. B., Pharm, V. L., Nguyen, T. T. and Choi, W. (2016). Multistage Constant-Current Charging Method for Li-Ion Batteries. In: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 381–385.
  • Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S. (2011). Modelling the Thermal Behaviour of a Lithium-Ion Battery During Charge. Journal of Power Sources, 196(11), pp. 5115–5121. doi: 10.1016/j.jpowsour.2011.01.103.
  • Kremer, P., Cigarini, F., Gohlich, D. and Park, S. (2021). Active Cell Balancing for Life Cycle Extension of Lithium-Ion Batteries under Thermal Gradient. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). Presented at the 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). IEEE, Boston, MA, USA, pp. 1–6. doi: 10.1109/ISLPED52811.2021.9502500.
  • Kremzow-Tennie, S. (2021). Modelling the Impact of Alternative Fast Charging Algorithms on the Thermal Behaviour of Lithium-Ion-Batteries. 1.
  • Kremzow-Tennie, S., Hellwig, M. and Pautzke, F. (2020). A Study on the Influencing Factors Regarding Energy Consumption of Electric Vehicles. In: 2020 21st International Conference on Research and Education in Mechatronics (REM). Presented at the 2020 21st International Conference on Research and Education in Mechatronics (REM). IEEE, Cracow, Poland, pp. 1–6. doi: 10.1109/REM49740.2020.9313934.
  • Kremzow-Tennie, S., Pautzke, F. and Boehm, K. A. (2019). Einflussuntersuchung verschiedener Schnellladeverfahren auf die Lebensdauer von Li-Ion Batterien. doi: 10.13140/RG.2.2.11668.24963.
  • Kremzow-Tennie, S., Pautzke, F., Mecit, H., Scholz, T. and Schmuelling, B. (2021). A Suggestion Towards Improving Electric Vehicle Fast Charging. In:H. Proff, ed., Making Connected Mobility Work. Springer Fachmedien Wiesbaden, Wiesbaden, pp. 251–261. doi: 10.1007/978-3-658-32266-3_14.
  • Lehtola, T. A. and Zahedi, A. (2021). Electric Vehicle Battery Cell Cycle Aging in Vehicle to Grid Operations: A Review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), pp. 423–437. doi: 10.1109/JESTPE.2019.2959276.
  • Lelie, M., Braun, T., Knips, M., Nordmann, H., Ringbeck, F., Zappen, H. and Sauer, D. U. (2018). Battery Management System Hardware Concepts: An Overview. Applied Sciences, 8(4), p. 534. doi: 10.3390/app8040534.
  • Liu, K., Li, K., Peng, Q. and Zhang, C. (2019). A Brief Review on Key Technologies in the Battery Management System of Electric Vehicles. Frontiers of Mechanical Engineering, 14(1), pp. 47–64. doi: 10.1007/s11465-018-0516-8.
  • Liu, Q., Du, C., Shen, B., Zuo, P., Cheng, X., Ma, Y., Yin, G. and Gao, Y. (2016). Understanding Undesirable Anode Lithium Plating Issues in Lithium-Ion Batteries. RSC Advances, 6(91), pp. 88683–88700. doi: 10.1039/C6RA19482F.
  • Liu, X., Chen, Z., Zhang, C. and Wu, J. (2014). A Novel Temperature-Compensated Model for Power Li-Ion Batteries with Dual-Particle-Filter State of Charge Estimation. Applied Energy, 123, pp. 263–272. doi: 10.1016/j.apenergy.2014.02.072.
  • LTC6803 Linear Multicell Battery Monitor [WWW Document]. (2021). Scribd. Available at: https://www.scribd.com/document/54242037/LTC6803-Linear-Multicell-Battery-Monitor [Accessed 13 Dec. 2021].
  • Lu, R., Yang, A., Xue, Y., Xu, L. and Zhu, C. (2010). Analysis of the Key Factors Affecting the Energy Efficiency of Batteries in Electric Vehicle. World Electric Vehicle Journal, 4(1), pp. 9–13. doi: 10.3390/wevj4010009.
  • Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T. and Shang, W. (2018). Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Progress in Natural Science: Materials International, 28(6), pp. 653–666. doi: 10.1016/j.pnsc.2018.11.002.
  • Mahmud, A. H., Daud, Z. H. and Asus, Z. (2017). The Impact of Battery Operating Temperature and State of Charge on the Lithium-Ion Battery Internal Resistance. Jurnal Mekanikal, 8.
  • Marcos, D., Garmendia, M., Crego, J. and Cortajarena, J. A. (2020). Hazard and Risk Analysis on Lithium-based Batteries Oriented to Battery Management System Design. In: 2020 IEEE Vehicle Power and Propulsion Conference (VPPC). Presented at the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, Gijon, Spain, pp. 1–6. doi: 10.1109/VPPC49601.2020.9330888.
  • Matadi, B. P., Geniès, S., Delaille, A., Waldmann, T., Kasper, M., Wohlfahrt-Mehrens, M., Aguesse, F., Bekaert, E., Jiménez-Gordon, I., Daniel, L., Fleury, X., Bardet, M., Martin, J. F. and Bultel, Y. (2017). Effects of Biphenyl Polymerization on Lithium Deposition in Commercial Graphite/NMC Lithium-Ion Pouch-Cells during Calendar Aging at High Temperature. Journal of the Electrochemical Society, 164(6), pp. A1089–A1097. doi: 10.1149/2.0631706jes.
  • Mu, H. and Xiong, R. (2018). Modeling, Evaluation, and State Estimation for Batteries, in: Modeling, Dynamics and Control of Electrified Vehicles. Woodhead Publishing, Elsevier, pp. 1–38. doi: 10.1016/B978-0-12-812786-5.00001-X.
  • Nikolian, A., Firouz, Y., Gopalakrishnan, R., Timmermans, J. M., Omar, N., van den Bossche, P. and van Mierlo, J. (2016). Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion. Energies, 9(5), p. 360. doi: 10.3390/en9050360.
  • Notten, P. H., het Veld, J. O. and Van Beek, J. R.(2005). Boostcharging Li-Ion Batteries: A Challenging New Charging Concept. Journal of Power Sources, 145(1), pp. 89–94. doi: 10.1016/j.jpowsour.2004.12.038.
  • Noura, N., Boulon, L. and Jemeï, S. (2020). A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges. World Electric Vehicle Journal, 11(4), p. 66. doi: 10.3390/wevj11040066.
  • Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. and Dietmayer, K. (2013). Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods. Journal of Power Sources, 239, pp. 680–688. doi: 10.1016/j.jpowsour.2012.11.146.
  • Omariba, Z. B., Zhang, L. and Sun, D. (2019). Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles. IEEE Access, 7, pp. 129335–129352. doi: 10.1109/ACCESS.2019.2940090.
  • Pagar, O., Darekar, M., Gawde, S., Bhartiy, J., Thakre, M. and Deshmukh, B. (2021). Comparative Evaluation of Fast Charging Systems for the Advanced Electric Vehicles with Pulse Charging & Reflex Charging. SSRN Electronic Journal, doi: 10.2139/ssrn.3882535.
  • Perisoara, L. A., Guran, I. C. and Costache, D. C. (2018). A Passive Battery Management System for Fast Balancing of Four LiFePO4 Cells. In: 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME). Presented at the 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), IEEE, Iasi, pp. 390–393. doi: 10.1109/SIITME.2018.8599258.
  • Petzl, M., Kasper, M. and Danzer, M. A. (2015). Lithium Plating in a Commercial Lithium-Ion Battery – A Low-Temperature Aging Study. Journal of Power Sources, 275, pp. 799–807. doi: 10.1016/j.jpowsour.2014.11.065.
  • Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W. and Podobnik, V. (2020). A Survey- Based Assessment of How Existing and Potential Electric Vehicle Owners Perceive Range Anxiety. Journal of Cleaner Production, 276, p. 122779. doi: 10.1016/j.jclepro.2020.122779.
  • Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W. and Podobnik, V. (2019). Electric Vehicle Range Anxiety: An Obstacle for the Personal Transportation (r) evolution?. In: 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). Presented at the 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), IEEE, Split, Croatia, pp. 1–8. doi: 10.23919/SpliTech.2019.8783178.
  • Popp, A., Fechtner, H., Schmuelling, B., Kremzow-Tennie, S., Scholz, T. and Pautzke, F. (2021). Battery Management Systems Topologies: Applications: Implications of Different Voltage Levels. In: 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA). Presented at the 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA). IEEE, Busan, Republic of Korea, pp. 43–50. doi: 10.1109/ICPEA52760.2021.9639285.
  • Purushothaman, B. K., Morrison, P. W. and Landau, U. (2005). Reducing Mass-Transport Limitations by Application of Special Pulsed Current Modes. Journal of the Electrochemical Society, 152(4), p. J33. doi: 10.1149/1.1861172.
  • Rahimi-Eichi, H., Ojha, U., Baronti, F. and Chow, M. Y. (2013). Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles. IEEE Industrial Electronics Magazine, 7(2), pp. 4–16. doi: 10.1109/MIE.2013.2250351.
  • Rathor, S. K. and Saxena, D. (2020). Energy Management System for Smart Grid: An Overview and Key Issues. International Journal of Energy Research, 44(6), pp. 4067–4109. doi: 10.1002/er.4883.
  • Redondo-Iglesias, E., Venet, P. and Pelissier, S. (2017). Impact of Battery Ageing on E-mobility Energy Efficiency. In: 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). Presented at the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, Monte-Carlo, Monaco, pp. 1–6. doi: 10.1109/EVER.2017.7935882.
  • Reniers, J. M., Mulder, G. and Howey, D. A. (2019). Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries. Journal of the Electrochemical Society, 166(14), pp. A3189–A3200. doi: 10.1149/2.0281914jes.
  • Savoye, F., Venet, P., Millet, M. and Groot, J. (2012). Impact of Periodic Current Pulses on Li-Ion Battery Performance. IEEE Transactions on Industrial Electronics, 59(9), pp. 3481–3488. doi: 10.1109/TIE.2011.2172172.
  • Scholz, T., Kremzow-Tennie, S., Pautzke, F., Fechtner, H., Popp, A. and Schmuelling, B. (2021). Analysis of Cell-to-Cell Variation in a Battery Pack after Long Service Life Using Parameter Identification. In: 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA). Presented at the 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA), IEEE, Busan, Republic of Korea, pp. 38–42. doi: 10.1109/ICPEA52760.2021.9639370.
  • Schuster, S. F., Bach, T., Fleder, E., Müller, J., Brand, M., Sextl, G. and Jossen, A. J. (2015). Nonlinear Aging Characteristics of Lithium-Ion Cells Under Different Operational Conditions. Journal of Energy Storage, 1, pp. 44–53. doi: 10.1016/j.est.2015.05.003.
  • Shang, Y., Zhang, C., Cui, N. and Guerrero, J. M. (2015). A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter. IEEE Transactions on Power Electronics, 30(7), pp. 3731–3747. doi: 10.1109/TPEL.2014.2345672.
  • Shen, M. and Gao, Q. (2019). A Review on Battery Management System From the Modeling Efforts to its Multiapplication and Integration. International Journal of Energy Research, 43(10), pp. 5042–5075. doi: 10.1002/er.4433.
  • Shen, W., Vo. T. T. and Kapoor, A. (2012). Charging Algorithms of Lithium-Ion Batteries: An Overview. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). Presented at the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE, Singapore, Singapore, pp. 1567–1572. doi: 10.1109/ICIEA.2012.6360973.
  • Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L and Li, Y. (2019). Lithium-Ion Battery Fast Charging: A Review. ETransportation, 1, p. 100011. doi: 10.1016/j.etran.2019.100011.
  • Trentadue, G., Lucas, A., Otura, M., Pliakostathis, K., Zanni, M. and Scholz, H. (2018). Evaluation of Fast Charging Efficiency under Extreme Temperatures. Energies, 11(8), 1937. doi: 10.3390/en11081937.
  • Uzair, M., Abbas, G. and Hosain, S. (2021). Characteristics of Battery Management Systems of Electric Vehicles with Consideration of the Active and Passive Cell Balancing Process. World Electric Vehicle Journal, 12(3), p. 120. doi: 10.3390/wevj12030120.
  • Van, C. N., Vinh, T. N., Ngo, M. D. and Ahn, S. J. (2021). Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series. Energies, 14(10), p. 2875. doi: 10.3390/en14102875.
  • Vidal, C., Malysz, P., Kollmeyer, P. and Emadi, A. (2020). Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art. IEEE Access, 8, pp. 52796–52814. doi: 10.1109/ACCESS.2020.2980961.
  • Waag, W., Fleischer, C. and Sauer, D. U. (2014). Critical Review of the Methods for Monitoring of Lithium-Ion Batteries in Electric and Hybrid Vehicles. Journal of Power Sources, 258, pp. 321–339. doi: 10.1016/j.jpowsour.2014.02.064.
  • Wang, S., Fan, Y., Stroe, D. I., Fernandez, C., Yu, C., Cao, W. and Chen, Z. (2021). Lithium-Ion Battery Characteristics and Applications. In: Battery System Modeling. Elsevier, pp. 1–46. doi: 10.1016/B978-0-323-90472-8.00003-2.
  • Wang, Z., Wang, Y., Rong, Y., Li, Z. and Fantao, L. (2016). Study on the Optimal Charging Method for Lithium-Ion Batteries Used in Electric Vehicles. Energy Procedia, 88, pp. 1013–1017. doi: 10.1016/j.egypro.2016.06.127.
  • Wang, D., Bao, Y. and Shi, J. (2017). Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter. Energies, 10(9), p. 1284. doi: 10.3390/en10091284.
  • Xing, Y., He, W., Pecht, M. and Tsui, K. L. (2014). State of Charge Estimation of Lithium-Ion Batteries Using the Open-Circuit Voltage at Various Ambient Temperatures. Applied Energy, 113, pp. 106–115. doi: 10.1016/j.apenergy.2013.07.008.
  • Xu, B., Oudalov, A., Ulbig, A., Andersson, G. and Kirschen, D. S. (2018). Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Transactions on Smart Grid, 9(2), pp. 1131–1140. doi: 10.1109/TSG.2016.2578950.
  • Yang, X. G. and Wang, C. Y. (2018). Understanding the Trilemma of Fast Charging, Energy Density and Cycle Life of Lithium-Ion Batteries. Journal of Power Sources, 402, pp. 489–498. doi: 10.1016/j.jpowsour.2018.09.069.
  • Yang, X. G., Zhang, G., Ge, S. and Wang, C. Y. (2018). Fast Charging of Lithium-Ion Batteries at all Temperatures. Proceedings of the National Academy of Sciences, 115(28), pp. 7266–7271. doi: 10.1073/pnas.1807115115.
  • Zhang, R., Xia, B., Li, B., Cao, L., Lai, Y., Zheng, W., Wang, H., Wang, W. and Wang, M. (2018). A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature. Energies, 11(9), p. 2408. doi: 10.3390/en11092408.
  • Zhu, J., Mathews, I., Ren, D., Li, W., Cogswell, D., Xing, B., Sedlatschek, T., Kantareddy, S. N., Yi, M., Gao, T. and Xia, Y. (2021). End-of-Life or Second-Life Options for Retired Electric Vehicle Batteries. Cell Reports Physical Science, 2(8), p. 100537. doi: 10.1016/j.xcrp.2021.100537.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7c8f8bf-4bf6-4bc2-82bb-8ab82db69e9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.