PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Performance Optimization of Organosilicon Slag Exothermic Insulating Riser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exothermic insulating riser played an important role in the solidification process of metal liquid for the improvement of casting quality. This paper focused on the use of organosilicon slag to replace part of the aluminum powder as an exothermic agent for the riser, to reduce production costs and turn waste into treasure. The experiments firstly studied the effect of organosilicon slag content on the combustion temperature and holding time and determined the components of the riser exothermic agent and organosilicon slag. On this basis, the effects of the content of Na3AlF6 flux and alkali phenolic resin binder on the combustion heating time and strength properties of the riser were studied. And the ratio of mixed oxidants was determined by single-factor orthogonal experiments to optimize the addition of three oxidants, Fe3O4, MnO2, and KNO3. Finally, the performance of the riser prepared after optimization was compared with that of the riser prepared with general aluminum powder. The results showed that with the mixture of 21% organosilicon slag and 14% aluminum powder as the exothermic agent, the highest combustion temperature of the prepared exothermic insulating riser was 1451℃ and the holding time was 193 s; the optimal content of Na3AlF6 flux was 4%, and the best addition alkali phenolic resin binder was 12%; the optimized mixing ratio of three oxidants was 12% for Fe3O4, 6% for MnO2, and 6% for KNO3. Under the optimized ratio, the maximum combustion temperature of the homemade riser was 52℃ and the heat preservation time was 14% longer compared with the conventional exothermic insulating riser with 25-35% aluminum powder.
Rocznik
Strony
75--82
Opis fizyczny
Bibliogr. 16 poz., il., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Wuhan Textile University, China
  • School of Mechanical Engineering and Automation, Wuhan Textile University, China
autor
  • School of Mechanical Engineering and Automation, Wuhan Textile University, China
autor
  • School of Mechanical Engineering and Automation, Wuhan Textile University, China
Bibliografia
  • [1] Sowa, L., Skrzypczak, T. & Kwiatoń, P. (2019). The influence of riser shape on feeding effectiveness of solidifying casting. Archives of Foundry Engineering. 19(4), 11-14. DOI: 10.24425/afe.2019.129636.
  • [2] Krajewski, P.K., Gradowski, A. & Krajewski, W.K. (2013). Heat exchange in the system mould - riser - ambient. part ii: surface heat emission from open riser to ambient. Archives of Metallurgy and Materials. 58(4), 1149-1153. DOI: 10.2478/amm-2013-0140.
  • [3] Vasková, I., Conev, M. & Hrubovčáková, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131-136. DOI: 10.1515/afe-2017-0064.
  • [4] Lu, J.J., Qian, J.B., Tan, S.M.,Yang, L.,Lu, X. (2021). Chinese Patent No. 202110969184.2. Beijing, China National Intellectual Property Administration.
  • [5] Purwadi, W., Idamayanti, D., Bandanadjaja, B., Zanet, M., Rizki, M. & Nadi, G. (2020). The thickness effect of exothermic sleeve made from rice husk on its performance as a riser in steel casting. International Journal of Emerging Trends in Engineering Research. 8(8), 4777-4783. DOI: 10.30534/ijeter/2020/115882020.
  • [6] Ali, R., Zafar, M., Manzoor, T., Kim W.Y., Rashid, M.U., Abbas, S.Z., Zai, B.A. & Ali, M. (2022). Elimination of solidification shrinkage defects in the casting of aluminum alloy. Journal of Mechanical Science and Technology. 36(5), 2345-2353. DOI: 10.1007/s12206-022-0416-z.
  • [7] Zhang, S.L., Wu, B. & Qin, Z.G. (2010). Ignition temperature of 2AI/Fe203 thermite. Chinese Journal of Energetic Materials. 18(2), 162-166. DOI: 10.3969/j.issn.1006-9941.2010.02.009. (in Chinese)
  • [8] Duan, W.H., Li, G.Z. & Du, C.S. (2017). Key features control and application problem countermeasure of exothermic & insulating riser sleeve. China Foundry Machinery & Technology. 6, 20-24. DOI: 10.3969/j.issn.1006- 9658.2017.06.005. (in Chinese).
  • [9] Williams, T.J., Hardin, R.A. & Beckermann, C. (2016). Thermophysical properties and performance of riser sleeves for steel castings. International Journal of Metalcasting. 10(4), 535-555. DOI: 10.1007/s40962-016-0041-7.
  • [10] Wang, T. & Yao, S. (2022). Research of feeding effect of ductile cast iron under different riser conditions. Metals. 12(3), 1-11. DOI: 10.3390/met12030412.
  • [11] Wei, Y.C., Lai, K.Z. & Xiong, J. (2021). Research on advances of catalytic cracking materials for organochlorosilane high-boiling residues. Materials Review. 35(21), 21022-21027. DOI: 10.11896/cldb.21060166.
  • [12] Liu, C.L., Ye, Q. & Meng, Q.F. (2003). Study on waste chlorosilane stream treatment. Science & Technology in Chemical Industry. 11(5), 44-46. (in Chinese).
  • [13] Wang, J.K., Liu, C.Y., Ma, Y. & Yue, Ch.T. (2022). Research progress in the treatment and utilization of chlorosilane residues in polysilicon industry. Journal of Chemical Engineering of Chinese Universities. 36(1), 9-19. DOI: 10.3969/j.issn.1003-9015.2022.01.002.
  • [14] He, X.Y., Chen, B.X. & He, Y.L. (2018). Method and influencing factors of extraction of copper from organic silicon slag. Zhejiang Chemical Industry. 49(4), 34-37. (in Chinese).
  • [15] Zhang, G., Liu, D., Fu, Y., Ni, X., Wang, H. & Chi, S. (2009). Application of organosilicon high-boiling components at home and abroad. China Elastomerics. 19(06), 65-68. (in Chinese).
  • [16] Yücel, O., TURAN, A., Candeger, K. C.. (2018). Optimization of exothermic riser sleeve design parameters. In 9th International Symposium on High-Temperature Metallurgical Processing (pp. 345-351). Springer International Publishing. DOI:10.1007/978-3-319-72138-5_35.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7c41ecf-1fc9-4a02-8aff-58ac52a46f4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.