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Abstract  

In the paper the problem of suppression of the waves – traveling along the linear, axially moving string – by 
the active distributed force is presented. The control law is based upon the idea of wave cancellation. The 

distributed force density is assumed to be proportional to the string transverse velocity resulting from the 
original running wave, assumed in the form of packet wave with amplitude modulation. As an objective 

function of the optimization problem considered the energy dissipated by the damping force segment is taken. 

Simulation results included demonstrate the effectiveness of the control law assumed and superiority of the 

distributed damping force over the concentrated force. 
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1. Introduction 

Axially moving string-like structures are important mass and energy transfer systems. 

The traveling string represents a typical model that has been utilized to describe the 

dynamics of  many engineering devices such as power transmission chains, machinery 

belts, textile fibers, paper sheets, band saws, aerial cable tramways, lift cables, fluid 

pipes; primarily when the object is long and narrow enough and its flexural rigidity 

could be neglected. 

The longitudinal and transverse oscillations associated with the devices – induced 

due to the external excitations and oscillations of supports – limit their utility in 

applications, so appropriate control methods should be introduced to suppress the 

vibration of the moving element.  

Papers [1–3] deal with the mathematical models and numerical methods established 

for study of the transient response and stability of the translating strings under various 

excitations.  

References [2,4] contain a survey of contributions related to the vibration control of 

axially moving strings. 

The means of control of distributed parameter systems (DPS) can be systemized with 

regard to the criteria applied:  

– active control or passive control [also combination (hybrid) or semi-active]; 

– different control techniques and control laws: modal control; parametric control; 

wave cancellation method; the Laplace’a transform domain approach; the 

Lyapunov energy method; the sliding-mode technique; adaptive methods; 

– concentrated force control or distributed force control; 
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– boundary control or spatial domain control; 

– feedback control or feedforward control; 

– linear or nonlinear string model. 

Generally speaking vibration control can be achieved in active [4–10] or passive way 

(or semi-active). As the first vibration suppression technique applied to the distributed 

parameter systems the so-called modal control was employed which approximates the 

string by a number of modes and utilizes the well-known control methods to design 

controllers.  

Parametric control [8][11] refers to the adjustment of system parameters, mainly the 

string tension, being changed on-line to suppress vibration. 

The idea of the wave cancellation (feedforward type) method [5–7,12] is to apply 

a control force to superimpose  a secondary wave source to cancel the waves traveling in 

the structure. The technique of the Laplace’a transform was used in [5,7].  

The Lyapunov function analysis implemented to boundary control can be used to 

derive control laws reducing the total mechanical energy of a moving system [8,13–15]. 

The variable structure control utilized to a traveling string was investigated in references 

[7,16–17].  

In the distributed parameter systems the controllers are distributed or point forces 

applied to the domain or at the boundary. It occured that only one collocated point sensor 

and actuator suffices for control of the axially moving string. It was found that the DPS 

became incontrollable and unobservable when sensors or actuators are located at nodal 

points. 

Distributed control enables to achieve better control performance than boundary 

control but is more difficult in implementations due to the distributed forces and 

feedback signals required. Boundary control seems to be more economic and easier 

applicable, the equations of the dynamic model don’t require modifications after adding 

actuators but implementations may be limited due to the size of the support rollers.   

There are few papers based on the nonlinear models of axially moving string for 

vibration control [13–15] comparing to the linear ones.  It was shown in [18] that the 

non-linear string can be stabilized by a linear velocity boundary feedback control. 

The present paper investigates active control of the linear axially moving string via 

a distributed force segment, the idea of wave cancellation is used. The original wave 

used in numerical simulations was assumed in the form of packet wave with amplitude 

modulation. 

An analytical solution of the linear differential equation of axially moving string (at  

a constant velocity) was used and the derived formula for the string transverse velocity 

was utilized. 

The energy balance of waves occurring in the system was employed to estimate the 

effectiveness of the proposed method of wave suppression. 

The presented results of numerical calculations prove the effectiveness of the 

proposed method of vibrations suppression in the axially moving string, they are also 

evidence of the advantage of using the distributed force compared to the concentrated 

force applied. 
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2. Mathematical Model of Axially Moving String 

The model used is linear, the transverse motion of axially moving string is governed by 

the equation: 
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where the following notations are introduced:   – linear mass density, T  – tension 

force, c  – velocity of the travelling wave equal to T  , V  – axial velocity of the 

moving string, ( , )q x t  – distributed loading. 

For the given initial conditions: 
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the solution of Eq. (1) takes the form (for V c ): 
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 In the presented analysis it was assumed that the string is formally infinite, 

practically it means that the borders of the string are so far away from the loading 

segment that it is not necessary to take into account the effect of wave reflection. The 

solution given by the expression (3) can also be used for the problem of motion of the 

string of a finite length, this requires the determination of reflected waves resulting from 

the adopted initial conditions and the appropriate extension of the function describing the 

distributed loading. 

Denoting the last component of the expression (3) by ( , )u x t
, it can be proved that: 
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The above expression will be used to determine the energy of travelling waves in  

a moving string. 

3. Optimization Problem 

The problem generally is to find the efficient way to suppress the waves travelling along 

the string. The idea of the wave cancellation method is to apply a control force to 

superimpose a secondary wave source to cancel the waves traveling in the structure.  
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In the paper [19] it was shown for a stationary string, that the concentrated active 

damping force dissipates maximum the half of the incident original wave energy (with 

the reflected wave neglected). The optimal force magnitude is then proportional to the 

magnitude of the string velocity component associated with the original wave (the 

vectors directions are opposite), the constant of proportionality is equal to the ratio of 

the string tension to the travelling wave velocity.  

The similar strategy was proposed in [20] for suppressing the travelling waves by the 

active damping segment, proving its effectiveness also for the case taking into account 

reflection of the waves from the border [21]. Based on the results obtained for the 

stationary string, an analogous method of suppressing vibrations for the moving string 

was adopted. 

The secondary wave comes from the distributed load, the active distributed damping 

force is assumed to be proportional to the component of the string transverse velocity 

resulting from the motion of the original wave 0 ( , )u x t
: 
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where ( ) 
 
denotes the damping coefficient function, ( )H   is the Heaviside function.  

The original wave used in numerical simulations was assumed in the form of packet 

wave with amplitude modulation, convenient in modeling of disturbances observed in 

cables: 
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where: 0k
 
– wave number, 

 
– packet width parameter. 

The traveling wave (6) corresponds to the sum of the first three components of 

expression (3), dependant on the appropriately adopted initial conditions (2), it satisfies 

the homogenous equation of motion (1) for ( , ) 0q x t  .  

 

Figure 1. Original incident wave and distributed damping segment 
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Using the introduced notations the solution of Eq. (1) can be written in the form: 

0( , ) ( , ) ( , )u x t u x t u x t = +  (7) 

Due to a shape of the packet wave function taken (Fig. 1), it is assumed that a width 

of the packet wave with non-zero amplitude of motion necessary to consider is 8 , so 

the  expression (6) displays the wave running to the right and reaching the damping 

segment at the moment 0t = . 

The active distributed force applied to the string by the damping segment has the 

effect of injecting the two secondary waves into the structure, running toward the left 

and right, which are transmitted outside the segment. The first (reflected) wave travels in 

opposite direction to the incident wave,  the second wave superposing with the incident 

wave finally forms the total passed wave. 

The energy balance will be used in the calculations, containing the original wave 

energy OE , the reflected wave energy RE  and the passed wave energy PE : 
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In the above integrals, instead of the infinite limits, the limits used in the numerical 

calculations are substituted. 

From the energy balance the energy dissipated DE  by the active force exerted by the 

damping segment can be obtained: 

( )D O R PE E E E= − +  (11) 

The dissipated energy can be used as an objective function. The aim is to determine the 

optimal control function ( , )x t  (Eq. 5), which maximizes the energy dissipated by the 

active damping force segment.  

4. Numerical Calculations Results  

Numerical simulations were performed to demonstrate the effectiveness of the proposed 

vibration control method via wave cancellation.  

The dissipation efficiency 

 

is defined as a ratio of the energy dissipated by the 

damping segment to the energy of the original wave: 

D

O

E

E
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The calculations were carried out assuming that the function describing the damping 

coefficient is constant over time and along the entire length of the damping segment: 

0( , )x t const  = . The aim was to find the optimal value of the relative damping 

coefficient 0 0  =  [1/s] maximizing the dissipation efficiency  . 

 

Figure 2. Dissipation efficiency   vs. relative damping coefficient 0 : 

 3.70L = , 3.0L =  

 

Figure 3. Dissipation efficiency   vs. relative damping coefficient 0 :  

9.22L = , 3.0L =  
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The graphs in Fig. 2 show the energy dissipation efficiency as a function of the 

relative damping coefficient, for the assumed wavelength 02 k =  and for different 

velocities of the moving string. 

From the plots it is evident that too low damping coefficient value means that the 

energy of the passed wave is too high, similarly too high damping coefficient value 

causes that the energy of the reflected wave is too high –  both cases resulting in a small 

amount of the energy dissipated in the damping segment. Similar graphs in the Fig. 3 

were made for a larger incident wavelength value. 

Finding the maxima of the curves shown in Fig. 2 and Fig. 3, the optimal values of 

the damping coefficient can be determined. It is visible that the maximum achievable 

damping efficiency decreases as the wavelength increases, and increases as the velocity 

of the moving string increases. 

For the given values of wave velocity c , velocity of axially moving string V , 

estimated wavelength   and assumed damping segment width L , the optimal value of 

the damping coefficient 0  can be determined. Given the measured transverse velocity 

of the string cross-section for the incident wave, this allows the distributed force acting 

in the segment to be determined as a function of position and time. The transverse string 

velocity must be measured at such a distance from the damping segment that the motion 

of the string is not disturbed by the resulting secondary waves.  

5. Conclusions 

The problem of optimal active distributed damping force necessary to suppress the 

waves traveling along the axially moving string is considered. The presented vibration 

suppression algorithm uses the idea of wave cancellation – the active distributed force is 

the source of the superimposed secondary wave which is to cancel the primary wave. 

The numerical results presented demonstrate the effectiveness of the distributed force 

damper and predominance over the concentrated force damper – a relatively narrow 

segment, compared to the wavelength, can provide over 90% vibration suppression 

efficiency. 

The paper does not present the technical realization of the damping segment. In 

practice, a continuous active damping segment could be implemented by a system of 

discrete forces applied at such a small distance from each other (in relation to the 

incident wavelength) that they could be treated as a distributed force. 

The presented method can also be used for the axially moving finite string, in the 

damping algorithm it is then necessary to take into account the waves reflected from the 

borders. 
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