PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity of optimized transient storage model parameters to spatial and temporal resolution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The transient storage model is a popular tool for modelling solute transport along rivers. Its use requires values for the velocity and shear flow dispersion coefficient in the main channel of the river together with two exchange rates between the main channel and transient storage zones, which surround the main channel. Currently, there is insufficient knowledge to enable these parameters to be predicted from the type of hydraulic variables that may typically be available. Hence, recourse is made to tracer experiments, which provide temporal solute concentration profiles that can be used to estimate the parameters by optimizing model output to observations. The paper explores the sensitivity of such parameters to the spatial and temporal resolutions used in the optimization of the model. Data from 25 tracer experiments covering a river flow rate range of 300–2250 L/s in a single reach of the river Brock in north-west England were used. The shear flow dispersion coefficient was found to be the most sensitive parameter; the velocity was found to be the least sensitive parameter. When averaged over all the experiments, mean percentage differences in parameter values between a coarse resolution case and a fine resolution case were of the order of 2% for the velocity, 70% for the shear flow dispersion coefficient and 30% and 20% for the two exchange rates. Since the shear flow dispersion coefficient was found to be small, both in numerical terms and in comparison with an estimate of the total dispersion in the reach, it is suggested that it may be viable to omit the shear flow dispersion term from the model.
Czasopismo
Rocznik
Strony
951--960
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
  • School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205‑9441, USA
Bibliografia
  • 1. Bencala KE, Walters RA (1983) Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model. Water Resour Res 19:718–724
  • 2. Briggs MA, Gooseff MA, Arp CD, Baker MA (2009) A method for estimating surface transient storage for streams with concurrent hyporheic storage. Water Resour Res 45:W00D27
  • 3. Camacho LA, Gonzalez RA (2008) Calibration and predictive ability of longitudinal solute transport models in mountain streams. Environ Fluid Mech 8:597–604
  • 4. Cheong TS, Younis BA, Seo IW (2007) Estimation of key parameters in model for solute transport in rivers and streams. Water Resour Manag 21:1165–1186
  • 5. Gooseff MN, McGlynn BL, McGlynn RS (2003a) Transient storage processes and stream discharge recession in a headwater stream, Maimai, New Zealand. Proc N Am Benthol Soc Annu Meet
  • 6. Gooseff MN, Wondzell SM, Haggerty R, Anderson J (2003b) Comparing transient storage modeling and residence time distribution (RTD) analysis in geomorphically varied reaches in the Lookout Creek basin, Oregon, USA. Adv Water Resour 26:925–937
  • 7. Hart DR, Mulholland PJ, Marzolf ER, DeAngelis DL, Hendricks SP (1999) Relationships between hydraulic parameters in a small stream under varying flow and seasonal conditions. Hydrol Process 13:1497–1510
  • 8. Jin H-S, Ward GM (2005) Hydraulic characteristics of a small coastal plain stream of the southeastern United States: effects of hydrology and season. Hydrol Process 19:4147–4160
  • 9. Kelleher C, Wagener T, McGlynn B, Ward AS, Gooseff MN, Payn RA (2013) Identifiability of transient storage model parameters along a mountain stream. Water Resour Res 49:5290–5306
  • 10. Liao Z, Cirpka OA (2011) Shape-free inference of hyporheic traveltime distributions from synthetic conservative and “smart” tracer tests in streams. Water Resour Res 47:W07510
  • 11. Manson JR, Wallis SG, Hope D (2001) A conservative semi-Lagrangian transport model for rivers with transient storage zones. Water Resour Res 37:3321–3329
  • 12. Manson JR, Wallis SG, Demars BOL, Mick JD, Gislason GM, Olafsson JS, Friberg N (2016) A comparison of three solute transport models using mountain stream tracer experiments. In: Rowinski PM, Marion A (eds) Hydrodynamic and mass transport at freshwater aquatic interfaces. Springer, Switzerland, pp 77–90
  • 13. Marion A, Zaramella M, Bottacin-Busolin A (2008) Solute transport in rivers with multiple storage zones: the STIR model. Water Resour Res 44:W10406
  • 14. O’Connor BL, Miki H, Harvey JW (2010) Predictive modelling of transient storage and nutrient uptake: implications for stream restoration. J Hyd Eng Am Soc Civ Eng 136:1018–1032
  • 15. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge
  • 16. Runkel RL (1998) One-dimensional transport with inflow and storage (OTIS): a solute transport model for streams and rivers. Water Resour Invest Rep 98–4018 (U S Geol Surv, Denver, Co)
  • 17. Runkel RL, Chapra SC (1993) An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resour Res 29:211–215
  • 18. Rutherford JC (1994) River Mixing. Wiley, Chichester
  • 19. Thackston EL, Krenkel PA (1967) Longitudinal mixing in natural streams. J Sanit Eng Div Proc Am Civ Soc Eng 93:67–90
  • 20. Wagener T, Camacho LA, Wheater HS (2002) Dynamic identifiability analysis of the transient storage model for solute transport in rivers. J Hydroinformatics 94:199–211
  • 21. Wagner BJ, Harvey JW (1997) Experimental design for estimating parameters of rate-limited mass transfer: analysis of stream tracer studies. Water Resour Res 33:1731–1741
  • 22. Wallis SG, Manson JR (2018) Flow dependence of the parameters of the transient storage model. In: Kalinowska MB, Mrokowska MM, Rowinski PM (eds) Free surface flows and transport processes. Springer, Cham, pp 477–488
  • 23. Wallis SG, Blakeley C, Young PC (1987) A microcomputer based fluorometric data logging and analysis system. J Inst Water Eng Sci 41:122–134
  • 24. Wallis SG, Young PC, Beven KJ (1989) Experimental investigation of the aggregated dead zone model for longitudinal solute transport in stream channels. Proc Inst Civ Eng Part 2(87):1–22
  • 25. Wallis SG, Osuch M, Manson JR, Romanowicz R, Demars BOL (2013) On the estimation of solute transport parameters for rivers. In: Rowinski P (ed) Experimental and computational solutions of hydraulic problems. Springer, Berlin, pp 415–425
  • 26. Worman A, Wachniew P (2007) Reach scale and evaluation methods as limitations for transient storage properties in streams and rivers. Water Resour Res 43:W10405
  • 27. Zaramella M, Marion A, Lewandowski J, Nutzman G (2016) Assessment of transient storage exchange and advection–dispersion mechanisms from concentration signatures along breakthrough curves. J Hydrol 538:795–801
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7bb321c-40ad-4a81-932e-03c0581ea83a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.