PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of 5-aminolevulinic acid and its derivatives in photodynamic therapy and diagnosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie kwasu 5-aminolewulinowego i jego pochodnych w terapii i diagnostyce fotodynamicznej
Języki publikacji
EN
Abstrakty
EN
5-aminolevulinic acid (5-ALA) is used as a drug in the photodynamic therapy (PDT) and photodynamic diagnosis (PDD) of cancer. Combined with irradiation at the appropriate wavelength, it is used as a photosensitizer precursor to identify/kill tumour cells. In cells, 5-aminolevulinic acid is converted to protoporphyrin IX (PpIX), which is the precursor of hemin. Internal application of 5-ALA induces the overproduction of the endogenous photosensitizer, PpIX, which can subsequently be activated by light at the appropriate wavelength. 5-ALA can be applied internally to trans-mutated areas or be injected directly into them. Chemical derivatives of 5ALA have the potential to improve bioavailability, enhance stability and lead to better therapeutic outcomes for treated patients. 5-ALA is currently the most commonly used drug in the photodynamic therapy and diagnosis (PDT/PDD) of cancers.
PL
Kwas 5-aminolewulinowy (5-ALA) jest stosowany jako lek w terapii fotodynamicznej (PDT) i diagnostyce fotodynamicznej (PDD) raka. Wraz z promieniowaniem o odpowiedniej długości fali jest używany jako prekursor fotouczulacza w celu identyfikacji lub/i zabicia komórek nowotworowych. W komórkach 5-ALA przekształca się w protoporfirynę IX (PpIX), która jest prekursorem heminy. Miejscowe zastosowanie 5-ALA indukuje nadprodukcję endogennego fotouczulacza PpIX, który może być następnie aktywowany światłem o odpowiedniej długości fali. 5-ALA można podawać zewnętrznie na leczone zmiany lub wstrzykiwać bezpośrednio do nich. Pochodne 5-ALA mogą poprawić biodostępność, zwiększyć stabilność i prowadzić do lepszych wyników terapeutycznych leczonych pacjentów. 5-ALA jest obecnie najczęściej stosowanym preparatem w fotodynamicznej terapii i diagnostyce (PDT/PDD) nowotworów.
Rocznik
Strony
113--130
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, 2 Gen. W. Urbanowicza Str., 00-908 Warsaw, Poland
autor
  • Military University of Technology, Institute of Optoelectronics, 2 Gen. W. Urbanowicza Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Alsarra I.A., Yassin A.E.B., Abdel-Hamid M., Alanazi F.K., Aljuffali I.A., Direct UPLC-MS-MS validated method for the quantification of 5-Aminolevulinic acid: application to in-vitro assessment of colonic targeted oral tablets, Journal of Chromatographic Science, vol. 49, 2011, 428-433.
  • [2] Jung S., Yang K., Lee D.E., Back K., Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice, Plant Sci., 167, 2004, 789-795.
  • [3] Watanabe K., Tanaka T., Kuramochi H., Takeuchi Y., Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid, Plant Growth Regul., 32, 2000, 97-101.
  • [4] Zhang W.F., Zhang F., Raziuddin R., Gong H.J., Yang Z.M., Ye Q.F., Zhou W.J., Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress, J. Plant Growth Regul., 27, 2, 2008, 159-169.
  • [5] Donnelly R.F., McCarron P.A., Woolfson A.D., Derivatives of 5-aminolevulinic acid for Photodynamic Therapy, Perspectives in Medical Chemistry, 2007, 49-63.
  • [6] Fornalski J., Terapia fotodynamiczna-jej oddziaływanie i zastosowanie w dermatologii, Borgis, Nowa Medycyna, 2006, 71-74.
  • [7] Ji H., Chien L., Lin Y., Chien H., Chen C., 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase, Molecular Cancer, 9,91, 2010, 2-11.
  • [8] Yano S., Hirohara S., Obata M., Hagiya Y., Ogura S., Ikeda A., Kataoka H., Tanaka M., Joh T., Current states and future views in photodynamic therapy, Journal of Photochemistry and Photobiology C:Photochemistry Rev., 12, 2011, 46-67.
  • [9] Wachowska M., Muchowicz A., Firczuk M., Gabrysiak M., Winiarska M., Wańczyk M., Bojarczuk K., Gołąb J., Aminolevulinic acid (ALA) as prodrug in Photodynamic Therapy of cancer, Molecules, 16, 2011, 4140-4164.
  • [10] Lieb S., Szeimies R.M., Lee G., Self-adhesive thin films for topical delivery of 5-aminolevulinic acid, Eur. J. Pharm. Biopharm., 53, 2002, 99-106.
  • [11] Moan J., Streckyte G., Bagdonas S., Bech O., Berg K., Photobleaching of protoporphyrin IX in cells incubated with 5-aminolevulinic acid, Int. J. Cancer, 70, 1997, 90-97.
  • [12] Fuchs C., Riesenberg R., Siegert J., Boumgartner R., PH-dependent formation of 5-aminolevulinic acid induced protoporphyrin IX in fibrosarcoma cells, J. Photochem. Photobiol. B: Biol., 40, 1997, 49-54.
  • [13] Xiang W., Weingandt H., Liebmann F., Klein S., Stepp H., Baumgartner R., Hillemanns P., Photodynamic effects induced by aminolevulinic acid esters on human cervical carcinoma cells in culture, Photochem. Photobiol., 74, 2001, 617-623.
  • [14] Lopez R.F., Bentley M.V., Delgado-Charro M.B., Salomon D., Guy R.H., Enhanced delivery of ALA esters by iontophoresis in vitro, Photochem. Photobiol., 77, 2003, 304-308.
  • [15] Ibboston S.H., Jong C., Lesar A., Ferguson J.S., Padget M., O’Dwyer M., Borrneston R., Ferguson J., Characteristics of ALA-induced PPIX fluorescence in human skin in vivo, Photodermatol. Photoimmunol. Photomed., 22, 2006, 105-110.
  • [16] Żólkowski P., Osiecka B.J., Oremeck G., Siewiński M., Symonowicz K., Saleh Y., Bronowicz A., Enhancement of photodynamic therapy by use of aminolevulinic acid/glycolic acid drug mixture, J. Exp. Ther.Oncol., 4, 2004, 121-129.
  • [17] Cormode D.P., Skajaa T., Fayad Z.A., Mulder W.J., Nanotechnology in medical imaging: probe and applications, Arteriorscler. Thromb. Vasc. Biol., 29, 7, 2009, 992-1000.
  • [18] Bechet D., Couleaud P., Trochat C., Viriot M.L., Guillemin F., Barberi-Heyob M., Nanoparticles as vehicles for delivery of photodynamic therapy agends, Trends Biotechnol., 26, 11, 2008, 612-621.
  • [19] Brevet D., Gary-Bobo M., Rachm L., Richeter S., Hocine O., Amro O., Amro K., Loock B., Couleaud P., Frochot C., Morere A., Maillard P., Garcia M., Duraud J.O., Mannosetargeted mesoporous silica nanoparticles for photodynamic therapy, Chem. Commun. 12, 2009, 1475-77.
  • [20] Deleeuw J., de Vijlder H.C., Bjerring P., Neumann H.A., Liposomes in dermatology today, J. Eur. Acad. Dermatol. 23, 5, 2009, 505-516.
  • [21] Roy I., Ohulchanskyy T.Y., Pudavar H.E., Bergey E.J., Oseroff A.R., Morgan J., Dougherty T.J., Prasad P.N., Ceramic-based nanoparticles entrapping water insoluble photosensitizing anti-cancer drugs: a novel drug carrier system for photodynamic therapy, J. Am. Chem. Soc. 125, 26, 2003, 7860-65.
  • [22] Gomes A.J., Lunardi C.N., Tedesco A.C., Characterization of biodegradable poly (D,L-lactideco-glycolide) nanoparticles loaded with bacteriochlorophyll-a for photodynamic therapy, Photomed. Laser Surg.,25, 5, 2007, 428-435.
  • [23] Thunshelle C., Yin R., Chen Q., Hamblin M.R., Current Advances in 5-Aminolevulinic Acid Mediated Photodynamic Therapy, Curr. Derm. Rep., 5, 2016, 179-190.
  • [24] Fotinos N., Campo M.A., Popowycz F., Gurny R., Lange N., 5-amnionolevulinic acid derivatives in photomedicine: characteristics, application and perspectives, Photochem. and Photobiol., 82, 2006, 994 1015.
  • [25] Kloek J., Beijersbergen Van Henegouwen M.J., Prodrugs of 5-aminolevulinic acid for photodynamic therapy, Photochem. Photobiol., 64, 1996, 994-1000.
  • [26] Rodriguez L., de Bruijn H.S., Di Venosa G., Mamone L., Robinson D.J., Juarranz A., Batle A., Casas A., Porphyrin synthesis from aminolevulinic acid esters in endothelial cell and its role in photodynamic therapy, J. Photochem. Photobiol. B, 96, 2009, 249-254.
  • [27] Pudroma X., Moan J., Ma L.W., Iani V., Juzeniene A., A comparison of 5-aminolevulinic acid and its heptyl ester: Dark cytotoxicity and protoporphyrin IX synthesis in human adenocarcinoma WiDr cells and in athymic nude mice healthy skin, Exp. Dermatol.,18, 2009, 985-987.
  • [28] Di Venosa G., Hermida L., Fukuda H., Defain M.V., Rodriguez L., Mamone L., McRobert A., Casas A., Batle A., Comparison of liposomal formulations of ALA undecanoyl ester for its use in photodynamic therapy, J. Photochem. Photobiol. B, 96, 2009, 152-158.
  • [29] Tunstall R.G., Barnett A.A., Schofield J., Griffiths J., Vernon D.I., Brown S.B., Roberts D.J., Porphyrin accumulation induced by 5-aminolevulinic acid esters in tumour cells growing in vitro and in vivo, Br. J.Cancer, 87, 2002, 246-250.
  • [30] Wakui M., Yokoyama Y., Wang H., Shigeto T., Fugatami M., Mizunuma H., Efficacy of metyl ester of 5-Aminolevulinic In photodynamic therapy for ovarian cancers, J. Cancer Res. Cli. Oncol., 136, 2010, 1143-1150.
  • [31] Donnely R.F., Ma L.W., Juzenas P., Iani V., McCorron P.A., Woolfson A.D., Moan J., Topical bioadhesive path systems enhance selectivity of protoporphyrin IX systems enhance selectivity of protoporphyrin IX accumulation, Photoche. Photobiol., 82, 2006, 670-675.
  • [32] Lee J.B., Choi J.Y., Chun J.S., Yun S.J., Lee S.C., Och J., Park H.R., Relationship of protoporphyrin IX synthesis to photodynamic effects by 5-aminolevulinic acid and its esters on various cell lines derived from the skin, Br. J. Dermatol.,159, 2008, 61-67.
  • [33] Kaliszewski M., Juzeniene M., Juzenas P., Kwaśny M., Kamiński J., Dąbrowski Z., Goliński J., Moan J., Formation of protoporphyrin IX from carboxylic and amino-derivatives of 5-aminolevulinic acid, J. Photodiagn. Photodynam. Ther., 2, 2005, 129-134.
  • [34] Zhu W., Gao Y., Song C., Lu Z., Namulinda T., Han Y., Yan Y., Wang L., Chen Z., Synthesis and evaluation of New 5-aminolevulinic acid derivatives as prodrug of protoporphyrin for photodynamic therapy, Photochem. Photobiol. Science, 16, 2017, 1623-1630.
  • [35] Buss J.L., Neuzil J., Ponka P., Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs, Arch. Biochem. Biophys., 421, 1, 2004, 1-9.
  • [36] Kalinowski D.S., Richardson D.R., The evolution of iron chelators for the treatment of iron overload disease and cancer, Pharmacol. Rev., 57, 4, 2005, 547-583.
  • [37] Yu Y., Wong J., Lovejoy D.R., Kalinowski D.S., Richardson D.R., Chelators of the cancer coalface: desferrioxamine to Triapine and beyond, Clin. Cancer Res.,12, 23, 2006, 6876-6883.
  • [38] Reelfs O., Eggleston I.M., Pourzand C., Skin protection against iron damage by multiantioxidants and chelating drugs/prodrugs, Curr. DrugMetab., 11, 3, 2010, 242-249.
  • [39] Yiakouvaki A., Savovic J., Al-Qenaei A., Dowden J., Paurzand C., Caged-iron chelators a novel approach towards protecting skin cell against UVA- induced necrotic cell death, J. of Investigative Dermatology, 126, 10, 2006, 2287-2295.
  • [40] Yamamoto F., Ohgari Y., Yamazaki N., The role of nitric oxide in δ-aminolevulinic acid (ALA)-induced photosensitivity of cancerouscells, Biochem. Biophys. Res. Commun., 353, 3, 2007, 541-546.
  • [41] Piskorz J., Nowak M., Gośliński T., Terapeutyczne i diagnostyczne zastosowanie kwasu 5-aminolewulinowego, Farm. Pol., 65, 7, 2009, 476-482.
  • [42] Lang K., Schulte K.W., Ruzicka T., Fritsch C., Aminolevulinic acid (levulan) in photodynamic therapy of actinic keratosis, Skin Therapy Lett., 6, 10, 2001, 1-2.5.
  • [43] Christensen E., Skogvoll E., Viset T., Warloe T., Sundstrom S., Photodynamic therapy with 5-aminolevulinic acid, dimethylsuloxideband curettage in basal cell carcinoma: A 6-year clinical and histological follow-up, J. Eur. Acad. Dermatol. Venereol., 23, 2009, 58-66.
  • [44] Kotimaki J., Photodynamic therapy of eyelid basal cell carcinoma, J. Eur. Acad. Dermatol. Venereol., 23, 2009, 1083-1087.
  • [45] Coors E.A., von den Driesh P., Topical photodynamic therapy for patients with therapy-resistant lesions of cutaneous T-lymphoma, J. Am. Acad. Dermatol., 50, 2004, 363-367.
  • [46] Morton C.A., Whitehurst C., Moseley H., McColl J.H., Moore J.V., Mackie R.M., Comparison of photodynamic therapy of Bowen’s disease, Br. J. Dermatol., 135, 1996, 766-771.
  • [47] Sieroń A., Namysłowski G., Misiołek M., Adamek M., Kawczyk-Krupka A., Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and hypopharyngeal cancers, Eur. Arch.Otorhinolaryngol., 258, 2001, 349-352.
  • [48] Chen H.M., Chen C.T., Yang H., Kuo M.Y., Kuo Y.S., Lan W.H., Wang Y.P., Tsai T., Chiang C.P., Successful treatment of oral verrucous hyperplasia with topical 5-aminolevulinic acid-mediated photodynamic therapy, Oral. Oncol., 40, 2004, 630-637.
  • [49] Fan K.F., Hopper C., Speight P.M., Buonaccorsi G., MacRobert A.J., Bown S.G., Photodynamic therapy using 5-aminolevulinic acid for premalignant lesions of the oral activity, Cancer, 78, 1996, 1374-1383.
  • [50] Barr H., Dix A.J., Kendall C., Stone N., The potential role for photodynamic therapy in the management of upper gastrointestinal disease, Aliment. Pharmacol. Ther., 15, 2001, 311-321.
  • [51] Kwaśny M., Fluorescencyjne metody i systemy do analiz materiałów biologicznych w czasie rzeczywistym, Wydawnictwo WAT, 2009.
  • [52] Krammer B., Plaetzer K., ALA and its clinical impact, from bench to bedside, Photochem. Photobiol. Sci., 7, 2008, 283-289.
  • [53] Grieb P., Kwas 5-aminolewulinowy (ALA) i jego zastosowanie w neurochirurgii, Neurol. Neurochir. Pol., 3893, 2004, 201-207.
  • [54] Christensen E., Warloe T., Kroon S., Funk J., Helsing P., Soler A.M., Guidelines for practical use of MAL-PDT in non-melanoma skin cancer, J. Eur. Acad. Dermatol Venereol., 24, 5, 2010, 505-512.
  • [55] Fritsch C., Homey B., Stahl W., Lehmann P., Ruzicka T., Sies H., Preferential relative porphyrin enrichment in solar keratoses upon topical application of delta-aminolevulinic acid methylester, Photochem. Photobiol., 68, 1998, 218-221.
  • [56] Maloney F.J., Collins P., Randomized, double-blind, perspective study to compare topical 5-aminolevulinic acid photodynamic therapy for extensive scalp actinic keratosis, Br. J. Dermatol., 157, 2007, 87-91.
  • [57] Valentine R.M., Ibboston S.H., Brown C.T., Wood K., Moseley H., A quantitative comparison of 5-aminolevulic acid-and methyl aminolevulinate-induced fluorescence, photobleaching and pain during photodynamic therapy, Photochem. Photobiol., 87, 2011, 242-249.
  • [58] Huang Z., A reviev of progress in clinical photodynamic therapy, Technol. Cancer Res Treat., 4, 2005, 283-293.
  • [59] Tierney E., Barker A., Abdout J., Hanke C.W., Moy R.L., Kouba D.J., Photodynamic therapy for the treatment of cutaneous neoplasia, inflammatory disorders, and photoaging, Dermatol. Surg., 35, 5, 2009, 725-746.
  • [60] Kawczyk-Krupka A., Ledwon A., Małyszek J., Balanoposthitis with epithelial dysplasia treated by photodynamic therapy, Photodiagn. Photodyn. Ther., 4, 1, 2007, 76-78.
  • [61] Kawczyk-Krupka A., Ledwon A., Karpe J., Simon-Sieroń M., Sieroń A., Terapia fotodynamiczna (PDT) w chorobach skóry, J. Ecol Health, vol. 15, 1, 2011, 28-34.
  • [62] Fotinos N., Campo M.A., Powycz F., Gurny R., Lange N., 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives, Photochem. Photobiol., 82, 4, 2006, 994-1015.
  • [63] Gold M.H., Therapeutic and aesthetic uses of photodynamic therapy, J. Clin. Aesthetic. Derm., 2, 1, 2009, 32-35.
  • [64] Csanady M., Kiss J.G., Ivan L., ALA(5-aminolevulinic acid)-induced protoporphyrin IX fluorescence in the endoscopic diagnostic and control of pharyngo-laryngeal cancer, Eur. Arch. Otorhinolaryngol., 261, 5, 2004, 262-266.
  • [65] Wilbers E., Morgus G., Wölfer J., Stummer W., Usefulness of 5-ALA (Gliolan®) derived PPX fluorescence for demonstrating the extent of infiltration in atypical meningiomas, Acta Neurochirurgica, 156, 10, 2014, 1853-1854.
  • [66] Klein A., Babilas P., Karrer S., Landthaler M., Szeimies R.M., Photodynamic therapy in dermatology-an update, Journal Der Deutschen Dermatologyschen Geseuschaft, 6, 2008, 839-845.
  • [67] Hauschild A., Stockflletch E., Popp G., Borrosch F., Bruning H., Dominicus R., Mensing H., Reinhold U., Reich K., Moor A.C., Stocker M., Ortland C., Brunnert M., Szieimies R.M., Optimisation of photodynamic therapy with a novel self-adhesive 5-aminolevulinic acid path: results of randomized controlled phase III studies, Br. J. Dermatol., 160, 2009, 1066-1074.
  • [68] Szeimies R.M., Randy P., Sebastian M., Borrosch F., Dirschka T., Krahn-Senftleben G., Reich K., Pabst G., Voss D.,Foguet M., Gahlman R., Lubbert H., Reinhold U., Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: result of prospective, randomized, double blind placebo controlled phase III study, Br. J. Dermatol., 163, 2010, 386-394.
  • [69] Warren C.B., Karai L.J., Vidimos A., Maytin E.V., Pain associated with aminolevulinic acidphotodynamic therapy of skin disease, J. Am. Acad. Dermatol., 6, 2009, 1033-1043.
  • [70] Sandberg C., Stenquist B., Rosdahl I., Ros A.M., Synnerstad I., Karlson M., Gudmundson F., Erikson M.B., Larkö O., Wennberg A.M., Important factors for pain during photodynamic therapy for actinic keratosis, Acta Derm. Venereol., 86, 2006, 404-408.
  • [71] Perotti C., Fukuda H., Di Venosa G., MacRobert A.J., Batle A., Casas A., Porphyrin synthesis from ALA derivatives for photodynamic therapy in vitro and in vivo studies, Br. J. Cancer, 19, 2004, 1660-1665.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. This work was funded under the mission of the Military University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7b66817-8a5a-4471-95ac-a1799b440206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.