Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Emulsion-based carriers for bioactive components
Języki publikacji
Abstrakty
W artykule scharakteryzowano nośniki emulsyjne zawierające zewnętrzną (ciągłą) fazę wodną. Mogą one stanowić ochronę lipofilowych i hydrofilowych substancji bioaktywnych, które charakteryzują się dużą labilnością chemiczną i są stosowane w bardzo małych stężeniach również w środowisku o odmiennej polarności. Odniesiono się także do innowacyjnych rozwiązań mających na celu zwiększenie stabilności emulsji oraz substancji bioaktywnych absorbowanych w poszczególnych fazach układu.
In the article, the emulsion-based carriers manufactured with the external (continuous) water phase were characterized. The mentioned carriers may be assigned to protect both lipophilic and hydrophilic bioactive components which are characterized by a high chemical instability and are used in very low concentrations also in the systems having a different polarity. Moreover, some of the innovative methods having the aim to increase stability of the emulsion and bioactive components absorbed in respective phases of the system were discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
40--45
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
- Wydział Nauk o Żywności i Rybactwa, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
- [1] Akhtar N., Ahmad M., Shoaib Khan H.M., Akram J., Gulfishan, Mahmood A., Uzair M.: 2010. Formulation and characterization of a multiple emulsion containing 1% l-ascorbic acid. Bull. Chem. Soc. Ethiop., 24, 1-10.
- [2] Al-Nabulsi A.A., Han J.H., Liu Z., Rodriguez-Vieira E.T., Holley R.A.: 2006. Temperature-sensitive microcapsules containing lactoferrin and their action against Carnobacterium viridans on bologna. Journal of Food Science, 71, M208–M214.
- [3] Bonnet M., Cansell M., Placin F., David-Briand E., Anton M., Leal-Calderon F.: 2010. Influence of ionic complexation on release rate profiles from multiple water-in oil-in water (w/o/w) emulsions. J. Agric. Food Chem., 58, 7762-7769.
- [4] Bortnowska G.: 2015. Multilayer oil-in-water emulsions: formation, characteristics and application as the carriers for lipophilic bioactive food components – a review. Pol. J. Food Nutr. Sci., 65. DOI: 10.2478/v10222-012-0094-0.
- [5] Choi S.J., Decker E.A., Henson L., Popplewell L.M., McClements D.J.: 2009. Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin. Journal of Agricultural and Food Chemistry, 57, 11349- 11353.
- [6] Choi S.J., Decker E.A., Henson L., Popplewell L.M., McClements D.J.: 2010. Inhibition of citral degradation in model beverage emulsions using micelles and reverse micelles. Food Chemistry, 122, 111-116.
- [7] Davidov-Pardo G., McClements D.J.: 2015. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chemistry, 167, 205–212.
- [8] de Folter J.W.J., Van Ruijvena M W M., Velikov K.P.: 2012. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter, 8, 6807−6815.
- [9] De Vos P., Faas M.M., Spasojevic M., Sikkema J.: 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20, 292-302.
- [10] Degner B.M., Olson K.M., Rose D., Schlegel V., Hutkins R., McClements D.J.: 2013. Influence of freezing rate variation on the microstructure and physicochemical properties of food emulsions. Journal of Food Engineering, 119, 244–253.
- [11] Dickinson E.: 2010. Food emulsions and foams: Stabilization by particles. Current Opinion in Colloid & Interface Science, 15, 40–49.
- [12] Dickinson D.: 2011. Double emulsions stabilized by food biopolymers. Food Biophysics, 6, 1–11.
- [13] Dickinson E.: 2013. Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric., 93, 710−721.
- [14] Farshchi A., Ettelaie R., Holmes M.: 2013. Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. Food Hydrocolloids, 32, 402-411.
- [15] Fanun M.: 2010. Microemulsions with nonionic surfactants and mint oil. The Open Colloid Science Journal, 3, 9-14.
- [16] Fanun M.: 2012. Microemulsions as delivery systems. Current Opinion in Colloid & Interface Science, 17, 306–313.
- [17] Fisher S., Wachtel E.J., Aserin A., Garti N.: 2013. Solubilization of simvastatin and phytosterols in a dilutable microemulsion system. Colloids and Surfaces B: Biointerfaces, 107, 35– 42.
- [18] Flanagan J., Singh H.: 2006. Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr., 46, 221–37.
- [19] Frank K., Walz E., Gräf V., Greiner R., Köhler K., Schuchmann H.P.: 2012. Stability of anthocyanin-rich W/O/W emulsions designed for intestinal release in gastrointestinal environment. Journal of Food Science, 77, N50–N57.
- [20] Gao Z.-M., Yang X.-Q., Wu N.N., Wang L.J., Wang J.-M., Guo J., Yin S.-W.: 2014. Protein-based pickering emulsion and oil gel prepared by complexes of zein colloidal particles and stearate. J. Agric. Food Chem., 62, 2672−2678.
- [21] Garti N., Spernath A., Aserin A., Lutz R.: 2005. Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter, 1, 206–18.
- [22] Green A.J., Littlejohn K.A., Hooley P., Cox P.W.: 2013. Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid & Interface Science, 18, 292–301.
- [23] Grigoriev D.O., Miller R.: 2009. Mono-and multilayer covered drops as carriers. Current Opinion in Colloid & Interface Science, 14, 48-59.
- [24] Gudipati V., Sandra S., McClements D.J., Decker E.A.: 2010. Oxidative stability and in vitro digestibility of fish oil-in-water emulsions containing multilayered membranes. J. Agric. Food Chem., 58, 8093-8099.
- [25] Guzey D., McClements D.J.: 2006. Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science, 128-130, 227-248.
- [26] Hemar Y., Cheng L.J., Oliver C.M., Sanguansri L., Agustin M.: 2010. Encapsulation of resveratrol using water-in-oil-in-water double emulsions. Food Biophysics, 5, 120–127.
- [27] Hoffmann H., Reger M.: 2014. Emulsions with unique properties from proteins as emulsifiers. Advances in Colloid and Interface Science, 205, 94–104.
- [28] Hu M., Li Y., Decker E.A., Xiao H., McClements D.J.: 2011. Impact of layer structure on physical stability and lipase digestibility of lipid droplets coated by biopolymer nanolaminated coatings. Food Biophysics, 6, 37-48.
- [29] Jiménez-Colmenero F.: 2013. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Research International, 52, 64–74.
- [30] Jiménez-Alvarado R., Beristain C.I., Medina-Torres L., Román-Guerrer, A., Vernon-Carter E.J.: 2009. Ferrous bisglycinate content and release in W1/O/W2 multiple emulsions stabilized by protein–polysaccharide complexes. Food Hydrocolloids, 23, 2424–2433.
- [31] Kaur S., Das M.: 2011. Functional Foods: An Overview. Food Sci. Biotechnol., 20, 861-875.
- [32] Leal-Calderón F., Homer S., Goh A., Lundin L.: 2012. W/O/W emulsions with high internal droplet volume fraction. Food Hydrocolloids, 27, 30–41.
- [33] Lee, M.N., Chan, H.K., Mohraz, A., 2012. Characteristics of Pickering emulsion gels formed by droplet bridging. Langmuir 28, 3085–3091.
- [34] Lesmes U., Sandra S., Decker E.A., McClements D.J.: 2010. Impact of surface deposition of lactoferin on physical and chemical stability of omega-3 rich lipid droplets stabilised by caseinate. Food Chemistry, 123, 99-106.
- [35] Li B., Jiang Y., Liu F., Chai Z., Li Y., Li Y., Leng X.: 2012. Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in W1/O/W2 double emulsion systems. International Journal of Food Science and Technology, 47, 248-254.
- [36] Li C., Li Y., Sun P., Yang C.: 2013. Pickering emulsions stabilized by native starch granules. Colloids and Surfaces A: Physicochem. Engineering. Aspects, 431, 142–149.
- [37] Luo Z., Murray B.S., Ross, A.L., Povey M.J.W., Morgan M.R.A., Day A.J.: 2012. Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers. Colloids Surf. B: Biointerfaces, 92, 84−90.
- [38] Márquez A.L., Wagner J.: 2010. Rheology of double (W/O/W) emulsions prepared with soybean milk and fortified with calcium. Journal of Texture Studies, 41, 651–671.
- [39] Maswal M., Dar A.A.: 2014. Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocolloids, 37, 182-195.
- [40] McClements D.J.: 2002. Lipid-based emulsions and emulsifiers [in: Food lipids]. Eds C.C. Akoh, D.B. Min. CRC. Taylor & Francis Group. Boca Raton. New York. USA, 63-101.
- [41] [51] McClements D.J., Decker E.A., Weiss J.: 2007. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science, 72, 8, R109-R124.
- [42] McClements D.J.: 2012. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid & Interface Science, 17, 235–245.
- [43] McClements D.J.: 2013. Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Progress in Lipid Research, 52, 409–423.
- [44] Mun S., Choi Y., Park K.-H., Shim J.-Y., Kim Y.-R.: 2013. Influence of environmental stresses on the stability of W/O/W emulsions containing enzymatically modified starch. Carbohydrate Polymers, 92, 1503– 1511.
- [45] O’Regan J., Mulvihill D.M.: 2010. Sodium caseinate-maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Research International, 43, 224-231.
- [46] Pal R.: 2011. Rheology of simple and multiple emulsions. Current Opinion in Colloid & Interface Science, 16, 41-60.
- [47] Pimentel-González D.J., Campos-Montiel R.G., Lobato-Calleros C., Pedroza-Islas R.: 2009. Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Research International, 42, 292–297.
- [48] Poyato C., Navarro-Blasco I., Calvo M.I., Cavero R.Y., Astiasarán I., Ansorena D.: 2013. Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity. Food Research International, 51, 132–140.
- [49] Rao J., McClements D.J. : 2011. Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate & lemon oil. Food Hydrocolloids, 25, 1413-1423.
- [50] Rousseau D.: 2013. Trends in structuring edible emulsions with Pickering fat crystals. Curr. Opin. Colloid Interface Sci., 18, 283−291.
- [51] Sagalowicz L., Leser M.E.: 2010. Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science, 15, 61–72.
- [52] Salas C., Nypelö T., Rodriguez-Abreu C., Carrillo C., Rojas O.J.: 2014. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science, 19, 383–396.
- [53] Santana R C., Perrechil F.A., Cunha R.L.: 2013. High- and low-energy emulsifications for food applications: a focus on process parameters. Food Eng Rev., 5, 107–122.
- [54] Schmelz T., Lesmes U., Weiss J., McClements D.J.: 2011. Modulation of physicochemical properties of lipid droplets using b-lactoglobulin and/or lactoferrin interfacial coatings. Food Hydrocolloids, 25, 1181-1189.
- [55] Shima M., Matsuo T., Yamashita M., Adachi S.: 2009. Protection of Lactobacillus acidophilus from bile salts in a model intestinal juice by incorporation into the inner-water phase of a W/O/W emulsion. Food Hydrocolloids, 23, 281–285.
- [56] Silva H.D., Cerqueira M.Â., Vicente A.A.: 2012. Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol., 5, 854–867.
- [57] Stauffer C.E.: 2001. Emulgatory. Wydawnictwo Naukowo-Techniczne. Warszawa.
- [58] Thanatuksorn P., Kawai K., Hayakawa M., Hayashi M., Kajiwara K.: 2009. Improvement of the oral bioavailability of coenzyme Q10 by emulsification with fats and emulsifiers used in the food industry. LWT - Food Science and Technology, 42, 385–390.
- [59] Timgren A., Rayner M., Dejmek P., Marku D., Sjöö M.: 2013. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Science & Nutrition., 1, 157–171.
- [60] Tokle T., Lesmes U., McClements D.J.: 2010. Impact of electrostatic deposition of anionic polysaccharides on the stability of oil droplets coated by lactoferrin J. Agric. Food Chem. 2010, 58, 9825–9832.
- [61] Tzoumaki, M. V.; Moschakis, T.; Kiosseoglou, V.; Biliaderis, C.G.: 2011. Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids, 25, 1521−1529.
- [62] Wang Q., Rojas E.C., Papadopoulos K.D.: 2012. Cationic liposomes in double emulsions for controlled release. Journal of Colloid and Interface Science, 383, 89–95.
- [63] Weiss J., Scherze I., Muschiolik G.: 2005. Polysaccharide gel with multiple emulsions. Food Hydrocolloids, 19, 605–615.
- [64] Weiss J., Takhistov P., McClements D.J.: 2006. Functional materials in food nanotechnology. J. Food Sci., 71, 9, R107-R116.
- [65] Yang X., Tian H., Ho C., Huang Q.: 2011a. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants. Journal of Agricultural and Food Chemistry, 59, 6113-6119.
- [66] Yang T.S., Liu T.T., Hu T.F.: 2011b. Effects of lecithin and pectin on riboflavin-photosensitized oxidation of orange oil in a multilayered oil-in-water emulsion. J. Agric. Food Chem., 59, 9344–9350.
- [67] Yang Y., McClements D.J.: 2013. Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocolloids, 30, 712 -720.
- [68] Yusoff, A., Murray B.S.: 2011. Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids, 25, 42–55.
- [69] Zeeb B., Fischer L., Jochen Weiss J.: 2011. Cross-linking of interfacial layers affects the salt and temperature stability of multilayered emulsions consisting of fish gelatin and sugar beet pectin. J. Agric. Food Chem., 59, 10546-10555.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7b15409-18fa-4a70-8ee9-8dd7575dc036