PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techniki chromatografii cieczowej, stosowane w analityce technicznej procesów hydrolizy biomasy ligno-celulozowej - BMLC. Przegląd

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Liquid chromatography techniques, used in technical analysis of hydrolysis processes, of lignocellulosic biomass. Review
Języki publikacji
PL
Abstrakty
PL
Obróbka wstępna biomasy ligno-celulozowej (BMLC) realizowana z zastosowaniem kwasów, zasad oraz enzymów jest ważnym etapem przetwarzania surowca przed procesem fermentacji. Podczas hydrolizy złożone struktury biopolimerów: celulozy, hemicelulozy i ligniny rozpadają się do związków o małej masie cząsteczkowej (cukry, oligosacharydy, związki fenolowe). Jednak nie jest to proces łatwy i wymaga doboru odpowiednich warunków procesu, między innymi rodzaj i stężenie katalizatora, temperatura procesu, czas, ciśnieni). Do określenia składu produktów głównych i ubocznych oraz wydajności produktów w zależności od warunków prowadzonego procesu konieczne jest wykorzystanie pewnych i sprawdzonych metod analitycznych. Odpowiednio dobrana analityka techniczna pozwala również monitorować przebieg procesu hydrolizy w reaktorze. W niniejszej pracy przedstawiono przegląd metod analitycznych wykorzystujących techniki chromatografii cieczowej do analizy technicznej produktów hydrolizy.
EN
Pre-treatment of lignocellulosic biomass (BMLC) using acids, bases and enzymes is an important stage of processing the raw material before the fermentation process. During hydrolysis, complex biopolymer structures: cellulose, hemicellulose and lignin break down into low molecular weight compounds (sugars, oligosaccharides, phenolic compounds). However, this is not easy process and requires the selection of appropriate process conditions, including the type and concentration of the catalyst, process temperature, time, pressure. To determine the composition of main products and by-products, but also to product performance depending on the conditions of the process, it is necessary to use reliable and tested analytical methods. Properly selected technical analytics allow also to monitor the course of the hydrolysis process in the reactor. This paper presents an overview of analytical methods using liquid chromatography techniques for technical analysis of hydrolysis products.
Czasopismo
Rocznik
Strony
92--105
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12 80-233 Gdańsk
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12 80-233 Gdańsk
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12 80-233 Gdańsk
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska, ul. Gabriela Narutowicza 11/12 80-233 Gdańsk
Bibliografia
  • [1] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology, 83 (2002) 1-11. doi: 10.1016/S0960-8524(01)00212-7.
  • [2] P. Kumar, DM. Barrett, MJ. Delwiche, P. Stroeve, Methods for pre-treatment of lignocellulosic Biomass for efficient hydrolysis and biofuel production, Industrial & Engineering Chemistry Research, 48 (2009) 3713–3729. doi: 10.1021/ie801542g.
  • [3] J. Wang, W. Wan, Influence of Ni2+ concentration on biohydrogen production, Bioresource Technology, 99 (2008) 8864-8. doi: 10.1016/j.biortech.2008.04.052.
  • [4] N. Azbar, Ft. Çetinkaya Dokgöz, T. Keskin, KS. Korkomaz, HM. Syed, Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions, International Journal of Hydrogen Energy, 34 (2009) 7441-7447. doi: 10.1016/j.ijhydene.2009.04.032.
  • [5] R. Kothari, DP. Singh, VV. Tyagi, SK. Tyagi, Fermentative hydrogen production – An alternative clean energy source, Renewable and Sustainable Energy Reviews, 16 (2012) 2337-2346. doi: 10.1016/j.rser.2012.01.002.
  • [6] JY. Zhu, X. Pan, RS. Zalesny, Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance, Applied Microbiology and Biotechnology, 87 ( 2010), 847-857. doi: 10.1007/s00253-010-2654-8.
  • [7] J. Zhu, Y. Li, X. Wu, C. Miller, P. Chen, R. Ruan, Swine manure fermentation for hydrogen production, Bioresource Technology, 100 (2009) 5472-5477. doi: 10.1016/j.biortech.2008.11.045.
  • [8] K. Karimi, G. Emtiazi, MJ. Taherzadeh, Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae, Enzyme and Microbial Technology, 40 (2006) 138-144. doi: 10.1016/j.enzmictec.2005.10.046.
  • [9] R. Lee, PJ. Weimer, WH. Zyl, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, 66 (2002) 506-577.
  • [10] DF. Correa, HL. Beyer, HP. Possingham, SR. Hall, PM. Schenk, Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels, Renewable and Sustainable Energy Reviews, 74 (2017) 1131-1146. doi: doi.org/10.1016/j.rser.2017.02.068.
  • [11] F. Saladini, N. Patrizi, FM. Pulselli, N. Marchettini, S. Bastianoni, Guidelines for emergy evaluation of first, second and third generation biofuels, Renewable Sustainable Energy Reviews, 66 (2016) 221-227. doi: 10.1016/j.rser.2016.07.073.
  • [12] DP. Singh, RK. Trvedi, Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel, International Journal of ChemTech Research, 5 (2013) 727-734.
  • [13] F. Carvalheiro, LC. Duarte, FM. Girio, Hemicellulose biorefineries: A review on biomass pretreatments, Journal of Scientific & Industrial Research (India), 67 (2008) 849-864.
  • [14] MJ. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review, International Journal of Molecular Sciences, 9 (2008) 1621–1651. doi: 10.3390/ijms9091621.
  • [15] R. Kumar, CE. Wyman, Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies, Biotechnology Progress, 25 (2002) 302-14. doi: 10.1002/btpr.102.
  • [16] X-Z. Zhang, N. Sathitsuksanoh, Y-HP. Zhang, Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase, Bioresource Technology, 101 (2010) 5534-5535. doi: 10.1016/j.biortech.2010.01.152.
  • [17] RN. Gurram, S. Datta, YJ. Lin, SW. Snyder, TJ. Menkhaus, Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies, Bioresource Technology, 102 (2011) 7850-7859. doi: 10.1016/j.biortech.2011.05.043.
  • [18] Q. Qing, B. Yang, CE. Wyman, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresource Technology, 101 (2010) 9624-9630. doi: 10.1016/j.biortech.2010.06.137.
  • [19] SI. Mhlongo, R. Den Haan, M. Viljoen-Bloom, Van Zyl WH., Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance, Enzyme and Microbial Technology, 81 (2015) 16-22 .doi: 10.1016/j.enzmictec.2015.07.005.
  • [20] K. Chen, S. Hao, H. Lyu, G. Luo, S. Zhang, J. Chen, Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass, Separation and Purification Technology, 172 (2017) 100-106. doi: 10.1016/j.seppur.2016.08.004.
  • [21] Z. Fuzfai, I. Boldizsar, I. Molnar-Perl, Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl–oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry, Journal of Chromatogrphy A., 1177 (2008) 183-189. doi: 10.1016/j.chroma.2007.11.023.
  • [22] R. Xie, M. Tu, Y. Wu, S. Adhikari, Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate, Bioresource Technology, 102 (2011) 4938-4942. doi: 10.1016/j.biortech.2011.01.050.
  • [23] G. Lodi, LA. Pellegrini, A. Alivverti, B. Rivas Torres, M. Morbidelli, Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography, Journal of Chromatogrphy A, (2017) 25- 36. doi: 10.1016/j.chroma.2017.03.016.
  • [24] R. Datar, J. Huang, PC. Maness, A. Mohagheghi, S. Czernik, E. Chornet, Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process, Internationa Journal of Hydrogen Energy, 32 (2007) 14245-14251. doi: 10.1016/j.ijhydene.2011.06.102.
  • [25] Y. Su, R. Du, H. Guo, M. Cao, Q. Wu, R. Su, Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components, Food Bioproduction Processing, 94 (2015) 322-330. doi: 10.1016/j.fbp.2014.04.001.
  • [26] B. Kaya, S. Irmak, A. Hasanoglu, O. Erbatur, Evaluation of various carbon materials supported Pt catalyts for aqueous-phase reforming of lignocellulosic biomass hydrolysate, International Journal of Hydrogen Energy, 39 (2014) 10135–10140. doi: 10.1016/j.ijhydene.2014.04.180.
  • [27] A. Wei, X. Zhang, D. Wei, G. Chen, Q. Wu, ST. Yang, Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides, Journal of Industrial Microbiology and Biotechnology, 36 (2009) 1383-1389. doi: 10.1007/s10295-009-0624-x.
  • [28] ISM. Rafiqul, AM. Mimi Sakinah, Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production, Chemical Engeering Science, 71 (2012) 431–437. doi: 10.1016/j.ces.2011.11.007.
  • [29] HB. Klinke, BK. Ahring, AS. Schmidt, AB. Thomsen, Characterization of degradation products from alkaline wet oxidation of wheat straw, Bioresource Technology, 82 (2002) 15-26.
  • [30] A. Gautam, TJ. Menkhaus, Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate, Journal of Membrane Science, 451 (2014) 93 – 107. doi: 10.1590/0104-6632.20170341s20150082.
  • [31] K. Ziemiński, I. Romanowska, M. Kowalska, Enzymatic pretreatment of lignocellulosic wastes to improve biogas production, Waste Management, 32 (2012) 1131-7. doi: 10.1016/j.wasman.2012.01.016.
  • [32] L. Coulier, Y. Zha, R. Bas, PJ. Punt, Analysis of oligosaccharides in lignocellulosic biomass hydrolysates by high-performance anion-exchange chromatography coupled with mass spectrometry (HPAEC-MS), Bioresource Technology, 133 (2013) 221-231. doi: 10.1016/j.biortech.2013.01.085.
  • [33] CF. Crespo, M. Badshah, MT. Alvarez, B. Mattiasson, Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis, Bioresource Technology, 103 (2012) 186-191. doi: 10.1016/j.biortech.2011.10.020.
  • [34] R. Bakker, A. Zeelend, D. Sanchez-Garcia, A. Punt, G. Eggink, Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment, Bioresource Technology, 181 (2015) 114-123. doi: 10.1016/j.biortech.2015.01.033.
  • [35] MKD. Rambo, Fl. Schmidt, MMC, Ferreira, Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities, Talanta, 144 (2015) 696-703. doi: 10.1016/j.talanta.2015.06.045.
  • [36] F. Mechmech, H. Chadjaa, M. Rahni, M. Marinova, N. Ben Akacha, F. Gargouri, Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal, Bioresource Technology, 192 (2015) 287-295. doi: 10.1016/j.biortech.2015.05.012.
  • [37] A. Boussaid, Y. Cai, J. Robinson, DJ. Gregg, Q. Nguyen, JN. Saddler, Sugar recovery and fermentability of hemicellulose hydrolysates from steam-exploded softwoods containing bark, Biotechnology Progress, 887 (2017) 887-892. doi: 10.1021/bp010092b.
  • [38] A. Barakat, F. Monlau, JP. Steyer, H. Carrere, Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production, Bioresource Technology, 104 (2012) 90-9. doi: 10.1016/j.biortech.2011.10.060.
  • [39] Z. Wang, J. Zhuang, X. Wang, Z. Li, Y. Fu, M. Qin, Limited adsorption selectivity of active carbon toward non-saccharide compounds in lignocellulose hydrolysate, Bioresource Technology, 208 (2016) 195-199. doi: 10.1016/j.biortech.2016.02.072.
  • [40] B. Wang, YH. Rezenom, K-C. Cho, JL. Tran, DG. Lee, DH. Russell, Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates, Bioresource Technology, 161 (2014) 162-170. doi: 10.1016/j.biortech.2014.02.133.
  • [41] PR. Waghmare, AA. Kadam, GD. Saratale, SP. Govindwar, Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation, Bioresource Technology, 168 (2014) 136-41. doi: 10.1016/j.biortech.2014.02.099.
  • [42] TLC Visualization Reagents., EMD Chem (2014).
  • [43] J. Heinonen, T. Sainio, Electrolyte exclusion chromatography using a multi-column recycling process: Fractionation of concentrated acid lignocellulosic hydrolysate, Separation and Purification Technology, 129 (2014) 137-149. doi: 10.1016/j.seppur.2014.03.031.
  • [44] B. Rafał, Corona CAD - nowa jakość w detekcji HPLC, Lab., (2010) 7-8.
  • [45] L-P. Yu., JE. Rollings, Quantitative branching of linear and branched polysaccharide mixtures by size exclusion chromatography and on-line low-angle laser light scattering detection, Journal of Applied Polymer Science, 35 (1988) doi: 10.1002/app.1988.070350420.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7a36cad-70f3-4341-974f-ce87b88f6af0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.