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Abstract. This article presents two mathematical methods of derivation of the Laplace 

operator in a given curvilinear co-ordinate system. This co-ordinate system is defined in the 

area between the armature and the yoke of a high-speed solenoid valve (HSV). The Laplace 

operator can further be used for the numerical solving of the Laplace’s equation in order 

to determine the electromagnetic force acting on the armature of the HSV. In further 

steps the author derived an expression for the gradient and the vector surface element 

of the armature side surface in this co-ordinate system. The solution of the derivation was 

compared with one other solution derived in the past for the computational investigations 

on HSVs. 
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1. Introduction 

On account of the growing globalization and the rising competition in the indus-

try, the enterprises must develop economically and use sophisticated calculation 

algorithms [1]. Electromagnetic HSVs can be pre-calculated with suitable mathe-

matical models already at an early time of the construction phase. Solenoid valves 

(SV) are used in fluid power pneumatic and hydraulic systems to control cylinders, 

fluid power motors or larger industrial valves. Domestic washing machines and 

dishwashers use SVs to control water entry into the machine. SVs can be used for 

a wide array of industrial applications, including general on-off control, calibration 

and test stands, pilot plant control loops and process control systems. They are also 

set very widely in the automotive industry. A number of numerical algorithms 

concerning computation of high-speed solenoid valves were published in [1]. 

The aim of the paper is a re-derivation and further development of some of them. 

The special interest lies in the derivation of the Laplace operator. This operator 

can be used for numerical computation of an electromagnetic force (EMF) acting 

on the armature of the HSV. In [2] the authors carried out research of key factors 
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on EMF of HSV. Further EMF is an input to the computation of e.g. armature

eccentricity, which is needed for building models of HSV similar to 
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zero. Using the derived Laplace operator one can compute the armature eccentricity

as a function of the sleeve thickness or as a function of hydraulic clearance between

the armature and the sleeve. After fi

permeance of the radial air gap, which has a direct impact on the drop of the 

magnetomotive force and finally influences the driving component of the magnetic 

force. The presided determination of the EMF is also u
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closure time and hold current, wh
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Further EMF is an input to the computation of e.g. armature

eccentricity, which is needed for building models of HSV similar to [3]. 

ies on HSVs assumed that the armature is concentrically positioned in the sleeve. 

Under this assumption the transversal component of the magnetic force is equal to 

zero. Using the derived Laplace operator one can compute the armature eccentricity

as a function of the sleeve thickness or as a function of hydraulic clearance between

the armature and the sleeve. After finding the eccentricity one can compute the 

permeance of the radial air gap, which has a direct impact on the drop of the 

magnetomotive force and finally influences the driving component of the magnetic 

The presided determination of the EMF is also useful for the controlling

the authors described the method of closed loop control for the

closure time and hold current, which strongly depends on the EMF. 

Preface to derivations 

(see Fig. 1) is the computation domain for the solution to the 

Laplace’s differential equation that is going to be solved using the method of finite 

differences. The inner border defined by the function ���� is the contour of the
solenoid valve armature where: 0 	 � 
 2�. The outer border given by the fun

is the inner side of the magnet yoke. It should be noticed that following 

transformations are valid only for the case of no contact between the armature and 

the inner side of the magnet yoke neither at �
 � 0, � � �� nor at any other
. The room between the borders has the permittivity compared 

to the permittivity of a vacuum. 

 

Computation room of the Laplace’s differential equation 
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. Most stud-
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Re-derivation of Laplace operator on curvilinear coordinates 

The room ��� is supposed to be discretized in a particular manner. Mesh lines 
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is supposed to be discretized in a particular manner. Mesh lines 

in a radial direction are distorted in such a way that they exactly fit the inner and 

outer border. The number of mesh lines in a radial direction is kept constant ind

pendently from the distance � between the borders. That means that at the circu
0 there is still a positive distance ��0� � 0. In order to vis

alise the capacity of the transformation this distance at � � 0 was purposely set
1 to a very small value. In general there is: ⋁ ������	 ��� �

cretizing method has the advantage that regions with small � (in which the solution 
contributes dominantly to the sought force) are meshed more densely than regions 

. That means that - in the difference to equidistant meshing methods 

one can avoid an unnecessary fine mesh in the case of big nonmagnetic gaps.

The density of mesh lines is variable both in the radial and peripheral direction. 

This method of discretizing allows for increase of computation precision with

ction of the mesh node numbers. 

 

Computation room of the Laplace’s differential equation 

in �, � co-ordinate system 

the work is to re-derive the Laplace operator to a co

system in which the computation domain gets a rectangle ��
 shown in 

The derivation of the Laplace operator in �, � co-ordinate system was done using 
the following transformation: 

 ���� � �������� � ����� 

 � � ���� 

in (1) are restricted only to functions which allow 

isomorphic and bijective in the whole domain ��
. Furthermore, the range of

function � is restricted to: 0 	 � 	 1. In [1] this transformation was 
done using the transformation shoal 

�����
 � �������� � ������

 � 2���������
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is supposed to be discretized in a particular manner. Mesh lines 

distorted in such a way that they exactly fit the inner and 

outer border. The number of mesh lines in a radial direction is kept constant inde-

between the borders. That means that at the circum-

. In order to visu-

was purposely set 

� 0. This dis-
(in which the solution 

contributes dominantly to the sought force) are meshed more densely than regions 

in the difference to equidistant meshing methods - 

onmagnetic gaps. 

The density of mesh lines is variable both in the radial and peripheral direction. 

This method of discretizing allows for increase of computation precision with 

derive the Laplace operator to a co-ordinates 

in Figure 2. 

was done using 

 (1) 

 (2) 

are restricted only to functions which allow � being 
Furthermore, the range of 

this transformation was 

� ���
 (3) 
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with the operators: 

 ∇� = ���� + ������� (4) 

 ∇� = ������� (5) 

 ∆� = ����� + ��� + ������ (6) 

 ∆� = ������ (7) 

The re-derivation of the Laplace operator will now be done in two ways: using 

the differential operators and using the differential geometry. In Table 1 the over-

view of derivation ways is presented. 

Table 1 

Overview of derivation methods of Laplace operator 

Author Vogel Goraj 

derivation using differential operators � = �,� = � � = ����,� = ���� 

derivation using the transformation shoal � = ����,� = ���� not done 

derivation using the differential geometry not done � = ����,� = ���� 

3. Derivation of Laplace operator using differential operators 

The Laplace operator in polar co-ordinate system is given by [5]: 

 � = ��� + ����� + ������ (8) 

The differential operator �� can be split using rules of partial differentiation: 
 �� = ���� + ���� (9) 

For the differential operator ��� can be written: 
 ��� = ������ = ��������	

�

�

�

+ ��������	

�

�
	

 (10) 

The application of the product rules on the term A yields: 

 
 = �������� + �������� (11) 

For the partial differential operator ��� can be written with the use of (9) 
 ������ = ������ + ������ = ����� + ����� (12) 
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With the use of (12) the formula (11) can be simplified to: 

 
 = ����� + ������ + ������� (13) 

Analogously to A hold for B: 

 � = �������� + �������� (14) 

For the partial differential operator ��� one can use (9) again, which gives: 
 ������ = ��������+ �������� = ����� + ����� (15) 

The use of (15) in (14) yields: 

 � = �������� + ������� + ��
���� (16) 

The summation of A and B yields the operator ��� 
 ��� = ����� + ����� + 2������� + ������ + ��

���� (17) 

Analogously to (17), one obtains ���: 

 ��� = ����� + ����� + 2������� + ������ + ��
���� (18) 

The unknowns in equations (17) and (18) are the first and the second derivative 

of � and � in � and � – direction. From the definition (2) one obtains: 
 �� = 0 (19) 

 ��� = 0 (20) 

The desolation of (1) for r leads to: 

 � = ���� + ����ℎ��� (21) 

The application of �� in (21) gives: 
 1 = ����ℎ (22) 

The application of �� in (22) yields: 
 0 = ������ℎ + �����ℎ (23) 

The desolation of (22) for �� and the desolation of (23) for ���  results in: 
 �� = ����ℎ�� (24) 

 ��� = −������
ℎ�� (25) 
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The application of �� in (21) yields: 
 

 0 = �� + ����ℎ + �ℎ� (26) 
 

The application of �� in (26) yields: 
 

 0 = ��� + ������ℎ + �����ℎ + 2����ℎ� + �ℎ�� (27) 
 

The desolation of (26) for �� and the desolation of (27) for ��� results in: 
 �� = −

�� + �ℎ���ℎ  (28)

 ��� = −
1��ℎ ���� + ������ℎ + 2����ℎ� + �ℎ��� (29)

 

Setting of (28) in (29) yields: 
 

��� = −
1��ℎ���� + ��� ��� + �ℎ���ℎ �� ℎ − 2�� ��� + �ℎ���ℎ �ℎ� + �ℎ��� (30)

 

Setting of (9) and (17) in (19) and (20) yields: 
 

 �� = ���� (31) 
 

 ��� = ����� + ������ (32) 
 

After the replacement of �� and ���  from (24) and (25) in (31) and (32), one 
obtains the transformed differential operators �� and ���: 
 

 �� = ����ℎ���� (33) 
 

 ��� = −������
ℎ���� + ���ℎ������ (34) 
 

Setting now the relations (28) and (30) in (18) one gets the transformed differential 

operator ���: 
 

��� = −
1��ℎ���� + ��� ��� + �ℎ���ℎ �� ℎ − 2�� ��� + �ℎ���ℎ �ℎ�

+ �ℎ����� + ����� − 2��

�� + �ℎ���ℎ ���
+ ��� + �ℎ���ℎ �� ��� + ��

���� 
(35)
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After setting of the operators (33) to (35) in (8) one obtains - under the usage of (1) 

- the Laplace operator in �,� co-ordinate system: 
 

� = � 1�� + �ℎ���ℎ −
�����
ℎ�

−
1�� + �ℎ����ℎ���� +

���
ℎ

��� + �ℎ��� ��

− 2
�� + �ℎ�

ℎ
ℎ� + �ℎ������ +

����� + �ℎ�� ��
+ � 1���ℎ�� + � �� + �ℎ��� + �ℎ���ℎ�

����� +
��

��� + �ℎ�� ���
− 2��

�� + �ℎ��� + �ℎ����ℎ��� 

(36)

 

The operator (36) is identical to the one derived in [1]. 

4. Derivation of Laplace operator using differential geometry 

In differential geometry, the Laplace operator can be generalized to operate on 

functions defined on surfaces in Euclidean space. The more general operator is 

called the Laplace-Beltrami operator. This operator of a scalar function in any cur-

vilinear co-ordinate system can be expressed using Einstein notation [6-8]: 
 ����� =

1�� ������������ (37)

 ��� in (37) is here the contravariant metric tensor of the second rank. Its general 

covariant form is [8]: 
 

��� = ��
��� ��
���
 (38)

 

The   in (38) is the summation index. The position vector � is defined by (39): 
 

 � = �����ℎ���+ ����� !cos�
sin�" (39) 

 

The variables of the position vector (39) are �� = � and �� = �. The derivatives 
of the position vector (39) are: 
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 �� = ��ℎ !cos�sin�" (40) 

 �� = ��
�� ���ℎ� + ��� cos� − ��ℎ + �� sin���ℎ� + ��� sin� + ��ℎ + �� cos�� (41) 

The use of (38) gives the components of the covariant metric tensors: 

 ��� = ���ℎ�� (42) 

��� =
�ℎ� + ����

��ℎ (43)

 ��� = ��� (44) 

��� =
��ℎ� + ���� + ��ℎ + �����

�
 (45)

 

The determinant of the metric tensors is equal to: 
 

� =
���ℎ����ℎ + �����

�
 (46)

 

The contravariant metric tensor is defined as [6]:  

 ��� = ����� (47) 

The components of the metric tensor in the contravariant form are: 
 

��� =
1���ℎ�� + � �ℎ� + ����ℎ��ℎ + ���

�

 (48)

 ��� = −��

�ℎ� + ����ℎ��ℎ + ��� (49)

 ��� = ��� (50) 

��� =
��

���ℎ + ��� (51)

 

The Laplace operator simplifies in the considered case to: 
 

∆= !���������+ ���������" ���� + !���������+ ���������" ����
+ ������ + ������ + 2������ (52)
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The multiplier of ���/��� can be expressed as: 
 

���������+ ��������� = �� ��ℎ���ℎ + �	

�

�
�

− �� �ℎ� + ���ℎ + �	


�


�
	

 (53)

 

The first term of (53) is equal to: 
 


 =
��ℎ�������ℎ + ��+ ��ℎ�������ℎ + ��− ��ℎ� + �������ℎ����ℎ + ���  (54)

 

The second term of (53) is equal to: 
 

� =
��ℎ���ℎ + ��− ��ℎ��ℎ� + �����ℎ + ���  (55)

 

The subtraction of the terms (54) and (55) yields for (53): 
 

���������+ ��������� = ��ℎ�������ℎ + �� (56)

 

The first part-multiplier of ���/��� becomes: 
 

��������� = �� �ℎ + ���ℎ��	

�

�
�

+ �� ��ℎ� + ������ℎ����ℎ + ��	




�




�
�

 (57)

 

The first term of (57) is equal to: 
 

# =
1��

−
��ℎ + �����
ℎ�����  (58)

 

The second term of (57) is equal to: 
 

$ = 2
�ℎ� + ��

ℎ����ℎ + ��ℎ� −
��ℎ� + �������
ℎ�������ℎ + ��− 1��

��ℎ� + ���ℎ + � �� (59)

 

The second part-multiplier of ���/��� becomes: 
 

��������� = −�� �ℎ� + ���ℎ + �	


�


�
�

 (60)
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Differentiation of (60) gives: 
 

% =
1��

�ℎ�� + ����ℎ + � −
1��

��ℎ� + ���ℎ + � �� (61)

 

Addition of the terms # (58) and $ (59) together with the subtraction of terms % 
(61) results in the multiplier of ���/���. This multiplier equals: 
 ���������+ ���������

=
1��

−
��ℎ + �����
ℎ����� + 2

�ℎ� + ��
ℎ����ℎ + ��ℎ�

−
��ℎ� + �������
ℎ�������ℎ + ��− 1��

�ℎ�� + ����ℎ + �  

(62)

 
Finally, inserting of (56), (62) and (46)-(51) in (52) yields to the Laplace operator: 

 

∆=
�����ℎ + ��� ��

+ � 1��ℎ + ����ℎ −
���

ℎ���
 + 2
�ℎ� + ����ℎ���ℎ + ��� ℎ�

−
��ℎ� + �������
ℎ���
��ℎ + ��� −

�ℎ�� + �����ℎ��ℎ + ������
+ � 1���ℎ�� + � �ℎ� + ����ℎ��ℎ + ���

����� +
��

���ℎ + ��� ���
− 2��

�ℎ� + ����ℎ��ℎ + ��� ��� 

(63)

 
The operator (63) is identical to (36) and to the one derived in [1].  

5. Gradient 

The gradient of a scalar function � in any curvilinear co-ordinate system is 
a covariant vector defined as [7] 

����� = ��

����� ����
 (64)
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The derivatives of the position vector (39) are given by (40) and (41). With the use 

of the new basis with unit vectors: 

 �� = �� (65) 

 �� = !�� + ��ℎ� + ����"��/� !��ℎ� + ����� + ���" �� (66) 

and the use of (1) one can write these derivatives in more compact manner: 

 �� = ���� (67) 

 �� = !�� + ��ℎ� + ����"�/� �� (68) 

The gradient (64) can be expressed by its components as follows: 

 ���� = ���&��� + ���&��� (69) 

 ���� = ���&��� + ���&��� (70) 

The elements of the contravariant metric tensor (48) to (51) can also be written in 

a shorter way: 
 

��� =
1��� + ���ℎ� + ������ �� (71)

 

��� = −��

��ℎ� + �������  (72)

 ��� = ��� (73) 

��� =
��

���  (74)

 

The sum of (69) and (70) together with (67), (68) and with relations (71)-(74) 

yields: 
 

� =
���� ��� + ��ℎ� + ������ �� − ����ℎ� + ������

+
���� '�� + ��ℎ� + ���� ����� −

��ℎ� + ����� ��� 
(75)

 

The derivatives of (1) in � direction are: 
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 �� = ��ℎ (76) 

Setting of (1) and (76) in (75) results in the nabla operator in �,� co-ordinate 
system. 
 

� =
����ℎ + ��� ���ℎ + ��� + ��ℎ� + ������ℎ �� − ����ℎ� + ������

+
����ℎ + ���'��ℎ + ��� + ��ℎ� + ���� �����

−
��ℎ� + �����ℎ ��� 

(77)

 
The operator (75) can also be expressed by means of the unit vectors of the �,� 
basis: 
 

� = �� ���� +
��� ����� −

��ℎ� + ����� ��� (78)

 
Now the operator (78) can be inspected by means of the operator (79) in polar 

co-ordinate system [5]: 

 ∇= ���� + ������� (79) 

For the operator �� can be written by means of rules of partial differentiation: 
 �� = ���� + ���� (80) 

Substitution of �� from (28) yields: 
 

�� = −
�� + �ℎ���ℎ �� + ���� (81)

 

After the setting of (19) and (24) in (9) one obtains the operator ��: 
 �� =

����ℎ (82)

 

Finally, the usage of (81), (82) and (21) in (79) yields to 

 

∇=
����ℎ�� +

��� + �ℎ ����� −
�� + �ℎ���ℎ ��� (83)
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Under the use of (21), (76) one can see that the operators (83) and (78) are identical 

to each other. 

6. Vector surface element of the armature side surface 

For the parameterization of the armature side surface the position vector (39) 

must be extended in the axial direction: 

 � = ��� + (�� (84) 

The vector surface element can be obtained from the cross product of partial 

derivatives of (84) in the � and ( direction: 
 )
 = ��� × ���)�)( (85) 

The derivatives of (84) are: 

 �� = ��
�� !��ℎ� + ����� + ���" (86) 

 �� = �� (87) 

Setting (86) and (87) in (85) yields the vector surface element of the armature side 

surface  

 )
 = ��
�� !�� + �ℎ��� − ��� + �ℎ����"

���
)�)( (88) 

7. Conclusions 

The Laplace operator in the curvilinear co-ordinate system used for the numeri-

cal computation of electromagnetic force acting on the armature of high-speed 

solenoid valves was derived in three different ways: transformation shoal in [1], 

differential operators and differential geometry. All these three Laplace operators 

are identical to each other. 
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