PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of the Photocatalytic Decomposition of Bisphenol A on Modified Photocatalysts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the evaluation of the photocatalytic kinetics of bisphenol A decomposition in the presence of commercial titanium(IV) oxide and modified photocatalysts (composites). The following modification methods were used: mechanical mixing, calcination and impregnation. The decomposition process was carried out with the addition of photocatalysts and activated carbon at doses of 100 mg/dm3 and 25 mg/dm3, respectively. The photocatalytic process was performed in a reactor from the Heraeus Company (Warsaw, Poland) with a volume of 0.7 dm3. The reactor was equipped with an immersed medium-pressure mercury lamp with a power of 150 W (λ = 200–580 nm). The degree of bisphenol A decomposition was determined by chromatographic analysis preceded by solid-phase extraction SPE. The qualitative-quantitative analysis was performed using a high-performance liquid chromatograph HPLC (UV detector, λ = 218 nm) from Varian (Warsaw, Poland). The dependence of the BPA decomposition on the duration of irradiation was found, wherein the modified photocatalysts were the most effective (from 75 to 90% after 15 minutes). The order of photocatalyst efficiency has been proposed as follows: TiO2<.sub> < TiO2/AC < Cdextran-TiO2/AC < Cmethanol-TiO2/AC< Cethanol-TiO2/AC < TiO2-AC. The highest degree of decomposition was observed in the presence of TiO2/AC (99%). Numerous studies suggest that the results of the TiO2 photocatalytic oxidation of organic substances fit well with the Langmuir–Hinshelwood (L–H) kinetic model. The kinetic parameters of the photocatalysis process were carried out according to the L-H model. According to the pseudo-first-order parameters, the results showed that the decomposition of bisphenol A was most intensive in the first 15 minutes of the process.
Rocznik
Strony
260--268
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 22B, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Division of Water Supply and Sewage Systems, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • 1. Ao C.H., Lee S.C., Yu J.C. 2003. Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J. Photochem. Photobiol. Chem. 156(1-3), 171-177.
  • 2. Asenjo N.G., Santamaria R., Blanco C., Granda M., Alvarez P., Menendez R. 2013. Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon. 55, 62-69.
  • 3. Azevedo D.A., Lacorte S., Viana P., Barcelo D. 2001. Occurrence of nonylphenol and bisphenol A in surface waters from Portugal. J. Brazil Chem. Soc. 12(4), 532-537.
  • 4. Bohdziewicz J., Kudlek-Jelonek E., Dudziak M. 2013. Analytical control of diclofenac removal in the photocatalytic oxidation process. Arch. Civil Engin. Environ. 6(3), 71-75.
  • 5. Careghini A., Mastorgio A. F., Saponaro S., Sezenna E. 2015. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ. Sci. Pollut. Res. 22(8):5711-5741.
  • 6. Carp O., Huisman C.L., Reller A. 2004. Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32(1-2), 33-177.
  • 7. Dong J., Li X L., Liang R. J. 2009. Bisphenol A pollution of surface water and its environmental factors. J. Ecol. Rural. Environ. 25(2), 94-97.
  • 8. Dudziak M., Burdzik-Niemiec E. 2014. Comparative studies on elimination of estrogens and xenoestrogens by the oxidation processes. Ecol. Chem. Eng. A. 21(2), 189-198.
  • 9. Fu M., Li Z., Gao H. 2007. Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers. Chemosphere. 69(7), 1009-1016.
  • 10. Inagaki M., Kojin F., Tryba B., Toyoda M. 2005. Carbon-coated anatase: the role of the carbon layer for photocatalytic performance. Carbon. 43(8), 1652-1659.
  • 11. Kudlek E., Bohdziewicz J., Dudziak M. 2015. Elimination of pharmaceutical compounds from municipal wastewater by photocatalysis, microfiltration and nanofiltration. Acta Innov. 16, 12-19.
  • 12. Kumar K.V., Porkodi K., Rocha F. 2008. Langmuir–Hinshelwood kinetics – A theoretical study. Catal. Comm. 9(1), 82-84.
  • 13. Lenoble V., Deluchat B., Serpaud J., Bollinger J. 2003. Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta. 61(3), 267-276.
  • 14. Ma X.Y., Gao N.Y., Li Q.S., Xu B., Le L.S., Wu J.M. 2006. Investigation of several endocrine disrupting chemicals in Huangpu River and water treatment units of a waterworks. China Water and Wastewater. 22(1-4), 10-16.
  • 15. Matsunaga T., Inagaki M. 2006. Carbon-coated anatase for oxidation of methylene blue and NO. Appl. Cat. Environ. 64(1-2), 9-12.
  • 16. Pirilä M. 2015. Adsorption and photocatalysis in water treatment: active, abundant and inexpensive materials and methods. Acta Universitatis Ouluensis, University Of Oulu, Oulu.
  • 17. Staples C.A., Dorn P.B., Klecka G.M., O’block S.T., Branson D.R., Harris L.R. 2000. Bisphenol A concentrations in receiving waters near US manufacturing and processing facilities. Chemosphere. 40(5), 521-525.
  • 18. Wright M.R. 2004. An introduction to chemical kinetics. John Wiley and Sons, England..
  • 19. Vethaak A.D., Lahr J., Schrap S.M., Belfroid A.C., Rijs G.B.J., Gerritsen A., de Boer J., Bulder A.S., Grinwis G.C.M., Kuiper R.V., Legler J., Murk T.A.J., Peijnenburg W., Verhaar H.J.M., de Voogt P. 2005. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere. 59(4), 511-524.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a79f426b-d3d4-4716-a354-30c035622d2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.