PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Commercial Kevlar derived activated carbons for CO2 and C2H4 sorption

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The carbonaceous precursor was obtained via pyrolysis of commercial aramid polymer (Kevlar). Additionally the precursor was activated at 1000°C in CO2 atmosphere for different times. Obtained materials were characterised by BET; XPS; SEM and optical microscopy. The sorption capacities were determined by temperature swing adsorption performed in TGA apparatus for CO2 and C2H4 gases. The obtained materials exhibit high difference in sorption of these gases i.e. 1.5 and 2.8 mmol/g @30°C respectively and high SSA ~1600 m2/g what can be applied in separation applications. The highest uptakes were 1.8 and 3.1 mmol/g @30°C respectively. It was found that the presence of oxygen and nitrogen functional groups enhances C2H4/CO2 uptake ratio.
Rocznik
Strony
81--87
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.
  • 2. Francke, R., Schille, B. & Roemelt, M. (2018). Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 118 4631–4701.
  • 3. Xie, C., Chen, C., Yu, Y., Su, J., Li, Y., Somorjai, G.A. & Yang, P. (2017). Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17, 3798–3802.
  • 4. Mozia, S., Darowna, D., Wróbel, R. & Morawski, A.W (2015). A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic reactor. J. Membr. Sci. 495 176–186. DOI: 10.1016/j.memsci.2015.08.024.
  • 5. Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A. & Hackett, L.A. (2018). Carbon capture and storage. (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176.
  • 6. Kapica-Kozar, J., Pirog, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Microporous Mesoporous Mater. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.
  • 7. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Sreńscek-Nazzal, J., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorp. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.
  • 8. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A 129, 158–161. DOI: 10.12693/APhysPolA.129.158.
  • 9. Sibera, D., Narkiewicz, U., Kapica, J., Serafin, J., Michalkiewicz, B., Wróbel, R.J. & Morawski, A.W. (2019). Preparation and characterisation of carbon spheres for carbon dioxide capture. J. Porous Mater. 26, 19–27. DOI: 10.1007/s10934-018-0601-8.
  • 10. Kapica-Kozar, J., Michalkiewicz, B., Wróbel, R.J., Mozia, S., Pirog, E., Kusiak-Nejman, E., Serafin, J., Morawski, A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPA-modified TiO2/titanate composite nanorods. New. J. Chem. 41, 7870–7885. DOI: 10.1039/c7nj01549f.
  • 11. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Pirog, E., Jedrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. 2017. DOI: 10.1155/2017/7359591.
  • 12. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.
  • 13. Sreńscek-Nazzal, J. & Kielbasa, K. (2019). Advances in modification of commercial activated carbon for enhancement of CO2 capture. Appl. Surf. Sci. 494, 37–151. DOI: 10.1016/j.apsusc.2019.07.108.
  • 14. Sreńscek-Nazzal, J. & Kielbasa, K. (2020). Microporous carbon foams for CO2 adsorption obtained from carbon nano-spheres. Przem. Chem. 99(1), 70–73. DOI: 10.15199/62.2020.1.7.
  • 15. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.
  • 16. Serafin, J., Baca, Martyna., Biegun, M., Mijowska, E., Kalenczuk, R.J., Sreńscek-Nazzar, J. & Michalkiewicz, B. (2019). Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Appl. Surf. Sci. 497. DOI: 10.1016/j.apsusc.2019.143722.
  • 17. Kapica-Kozar, J., Pirog, E., Kusiak-Nejman, E., Wróbel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New. J. Chem. 41, 1549–1557. DOI: 10.1039/c6nj02808j.
  • 18. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.
  • 19. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A 129, 394-401. DOI: 10.12693/APhysPolA.129.394.
  • 20. Li, J., Michalkiewicz, B., Min, J., Ma, C., Chen, X., Gong, J., Mijowska, E. & Tang, T. (2019). Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chem. Eng. J. 360, 250–259. DOI: 10.1016/j.cej.2018.11.204.
  • 21. Kukulka, W., Cendrowski, K., Michalkiewicz, B. & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 adsorption. RSC Adv. 9, 34349–34349. DOI: 10.1039/c9ra90077b.
  • 22. Shi, X., Gong, J., Kierzek, K., Michalkiewicz, B., Zhang, S., Chu, P.K., Chen, X., Tang, T. & Mijowska, E. (2019). Multifunctional nitrogen-doped nanoporous carbons derived from metal-organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. New. J. Chem. 43, 10405–10412. DOI: 10.1039/c9nj01542f.
  • 23. Zgrzebnicki, M., Michalczyszyn, E. & Wrobel, R.J. (2018). Improving the Carbon Dioxide Uptake Efficiency of activated Carbons Using a Secondary Activation With Potassium Hydroxide, Pol. J. Chem. Technol., 20(3), 87–94. DOI: 10.2478/pjct-2018-0043.
  • 24. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.
  • 25. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.
  • 26. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.
  • 27. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.
  • 28. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10, 20–26. DOI: 10.2478/v10026-008-0023-5.
  • 29. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.
  • 30. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.
  • 31. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82, 627–628.
  • 32. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.
  • 33. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.
  • 34. Jarosinska, M., Lubkowski, K., Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.
  • 35. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.
  • 36. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrog. Energy 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.
  • 37. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.
  • 38. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.
  • 39. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21. DOI: 10.1088/0957-4484/21/14/145308.
  • 40. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrog. Energy 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.
  • 41. Sreńscek-Nazzal, J., Kamińska, Weronika., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sug-arcane molasses. Ind. Crops Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.
  • 42. Keller, N., Ducamp, M., Robert, D., Keller, V. (2013) Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation, Chem. Rev. 113(7), 5029–5070. DOI: 10.1021/cr900398v.
  • 43. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.
  • 44. Wenelska, K., Michalkiewicz, B., Gong, Jiang., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrog. Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.
  • 45. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kaleńczuk, R.J. & Zielińska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int. J. Hydrog. Energy 42, 30461–30469. DOI: 10.1016/j.ijhydene.2017.10.146.
  • 46. Kukulka, W., Cendrowski, K., Michalkiewicz, B. & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 absorption. RSC Adv. 9, 18527–18537. DOI: 10.1039/c9ra01786k.
  • 47. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, Xin. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.
  • 48. Zielińska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kaleńczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres. (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.
  • 49. Baca, M.., Cendrowski, K., Kukulka, W., Bazarko, G., Moszynski, D., Michalkiewicz, B., Kalenczuk, R.J. & Zielińska, B. (2018). A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials 8. DOI: 10.3390/nano8090639.
  • 50. Zielińska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Research Letters 10. DOI: 10.1186/s11671-015-1113-y.
  • 51. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.
  • 52. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, Rafal. J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.
  • 53. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A, 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.
  • 54. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.
  • 56. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.
  • 57. Wróblewska, A., Serafin, J., Gawarecka, A., Miadlicki, P., Urbas, K., Koren, Z.C., Llorca, J. & Michalkiewicz, B. (2020). Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters 30, 189–198. DOI: 10.1007/s42823-019-00084-2.
  • 58. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2018). Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. React. Kinet. Mech. Catal. 125, 843–858. DOI: 10.1007/s11144-018-1468-z.
  • 59. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption 23, 551–61. DOI: 10.1007/s10450-017-9867-4.
  • 60. Kielbasa, K., Maciejewska, N., Kaminska, A. & Sreń-scek-Nazzal, J. (2020). Porous carbon materials obtained from molasses carbon spheres. Przem. Chem. 99(11), 1636–1639. DOI: 10.15199/62.2020.11.9.
  • 61. Zhao, X., Hirogaki, K., Tabata, I., Okubayashi, S. & Hori. T. (2006). A new method of producing conductive aramid fibers using supercritical carbon dioxide. Surf. Coat. Technol. 201(3–4) 628–636. DOI: 10.1016/j.surfcoat.2005.12.021.
  • 62. Prasad,V.V. & Talupula, S. (2018). A Review on Reiforcement of Basalt and Aramid (Kevlar 129) fibers. Mater. Today 5(2), 5993–5998. DOI: 10.1016/j.matpr.2017.12.202.
  • 63. Sutanu, S. & Singh, T.J. (2015). Characterisation of Kevlar Fiber and Its Composites: A Review. Mater. Today 2(4–5), 1381–1387. DOI: 10.1016/j.matpr.2015.07.057.
  • 64. Qin, J., Guo, B., Zhang, L., Wang, T., Zhang, G. & Shi, X. (2020). Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos. B. Eng. 183, 107686. DOI: 10.1016/j.compositesb.2019.107686.
  • 65. Venkataraman, M., Xiong, X., Novotna, J., Kasparova, M., Mishra, R. & Militky, J. (2019) Thermal Protective Properties of Aerogel-coated Kevlar Woven Fabrics, J. Fib. Bioeng. Inform.12, 93–101. DOI: 10.3993/jfbim00321.
  • 66. Balaji, R., Nadarajana, M., Selokara, A., Kumara, S. & Sivakumar S. (2019). Modelling and analysis of Disk Brake under Tribological behaviour of Al-Al2O3 Ceramic Matrix Composites/Kevlar® 119 composite/C/Sic-Carbon Matrix Composite/Cr-Ni-Mo-V steel. Mater. Today 18, 3415–3427.
  • 67. https://www.dupont.com/brands/kevlar.html; access time 2021.06.08.
  • 68. Castro-Muniz, A., Martınez-Alonso, A. & Tascon, J.M.D. (2008). Microporosity and mesoporosity of PPTA-derived carbons. Effect of PPTA thermal pretreatment, Microporous and Mesoporous Mater. 114, 185–192. DOI: 10.1016/j.micromeso.2008.01.003.
  • 69. Conte, G., Stelitano, S., Policicchio, A., Minuto, F.D., Lazzaroli, V., Galiano, F. & Agostino, R.G. (2020). Assessment of activated carbon fibers from commercial Kevlar® as nanostructured material for gas storage: Effect of activation procedure and adsorption of CO2 and CH4. J. Anal. Appl. Pyrolysis 152, 104974. DOI: 10.1016/j.jaap.2020.104974.
  • 70. Zhang, Z., Yang, S., Zhang, P., Zhang, J., Chen, G. & Feng, X. (2019). Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920. DOI: 10.1038/s41467-019-10885-8.
  • 71. Suarez-Garcia, F., Martinez-Alonso, A. & Tascon, J.M.D. (2004). Nomex polyaramid as a precursor activated carbon fibers by phosphoric acid activation. Temperature and time effects. Microporous Mesoporous Mater. 75(1–2), 73–80. DOI: 10.1016/j.micromeso.2004.07.004.
  • 72. Castro-Muniz, A., Martinez-Alonso, A. & Tascon, J.M.D. (2009). Effect of PPTA pre-impregnation with phosphoric acid on the porous materials texture of carbons materials prepared by CO2 activation of PPTA chars. Microporous Mesoporous Mater. 119(1–3), 284–289. DOI: 10.1016/j.micromeso.2008.10.025.
  • 73. Choma, J., Osuchowski, Ł., Marszewski, M., Dziura, A. & Jaroniec, M. (2016). Developing microporosity in Kevlar1-derived carbon fibers by CO2 activation for CO2 adsorption. J. CO2 Util. 16, 17-22. DOI: 10.1016/j.jcou.2016.05.004 2212-9820.
  • 74. Villar-Rodil, S., Navarrete, R., Denoyel, R., Albiniak, A., Paredes, J.I, Martinez-Alonso, A. & Tascon, J.M.D. (2005). Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. Micro-porous Mesoporous Mater. 77(2–3), 109–118. DOI: 10.1016/j.micromeso.2004.08.017.
  • 75. Villar-Rodil, S., Denoyel, R., Rouquerol, J. Martinez-Alonso, A. & Tascon, J.M.D. (2002). Characterization of aramid based activated carbon fibres by adsorption and immersion techniques. Carbon. 40(8), 1376–1380. DOI: 10.1016/S0008-6223(02)00114-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
W bibliograffii brak poz. 55
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a79dc86e-481e-40cd-be38-604a2f4550c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.