PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new technique to design planar dipole antennas by using Bezier curve and Particle Swarm Optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents a new technique which includes the principle of a Bezier curve and Particle Swarm Optimization (PSO) together, in order to design the planar dipole antenna for the two different targets. This technique can improve the characteristics of the antennas by modifying copper textures on the antennas with a Bezier curve. However, the time to process an algorithm will be increased due to the expansion of the solution space in optimization process. So as to solve this problem, the suitable initial parameters need to be set. Therefore this research initialized parameters with reference antenna parameters (a reference antenna operates on 2.4 GHz for IEEE 802.11 b/g/n WLAN standards) which resulted in the proposed designs, rapidly converted into the goals. The goal of the first design is to reduce the size of the antenna. As a result, the first antenna is reduced in the substrate size from areas of 5850 mm2 to 2987 mm2 (48.93% approximately) and can also operates at 2.4 GHz (2.37 GHz to 2.51 GHz). The antenna with dual band application is presented in the second design. The second antenna is operated at 2.4 GHz (2.40 GHz to 2.49 GHz) and 5 GHz (5.10 GHz to 5.45 GHz) for IEEE 802.11 a/b/g/n WLAN standards.
Rocznik
Strony
513--525
Opis fizyczny
Bibliogr. 24 poz., fig., tab., wz.
Twórcy
autor
  • Kasetsart University Department of Electrical Engineering 50 Ngam Wong Wand Rd, Lat Tao Chatuchak Bangkok 10900
autor
  • Kasetsart University Department of Electrical Engineering 50 Ngam Wong Wand Rd, Lat Tao Chatuchak Bangkok 10900
  • Kasetsart University Department of Electrical Engineering 50 Ngam Wong Wand Rd, Lat Tao Chatuchak Bangkok 10900
autor
  • Kasetsart University Department of Electrical Engineering 50 Ngam Wong Wand Rd, Lat Tao Chatuchak Bangkok 10900
autor
  • Kasetsart University Department of Electrical Engineering 50 Ngam Wong Wand Rd, Lat Tao Chatuchak Bangkok 10900
Bibliografia
  • [1] Altshuler E. E., Linder D. S., Wire antenna designs using genetic algorithms, IEEE Antennas and Propagation Magazine 39(2): 33-43 (1997).
  • [2] Bao X. L., Ruvio G., Ammann M. J., John M., A novel GPS patch antenna on a fractal hi-impedance surface substrate, IEEE Antennas and Wireless Propagation Letters 5: 323-326 (2006).
  • [3] Khan O. M., Islam Z. U., Rashid I., Bhatti F. A., Islam Q. U., Novel miniaturized koch pentagonal fractal antenna for multiband wireless applications, Progress In Electromagnetics Research 141: 693-710 (2013).
  • [4] Silabut W., Kuhirun W., Design of a miniaturized dual-band antenna using particle swarm optimization, Proceedings of Asia-Pacific Microwave Conference, pp. 1886-1889 (2009).
  • [5] Wong M., Sebak A. R., Denidni T. A., Wideband dielectrically guided horn antenna with microstrip line to H-Guide feed, IEEE Transactions on Antennas and Propagation 60(2): 725-734 (2012).
  • [6] Varadhan C., Pakkanthillam J. K., Kanagasabai M. et al., Triband antenna structures for RFID systems deploying fractal geometry, IEEE Antennas and Wireless Propagation Letters 12: 437-440 (2013).
  • [7] Kuhirun W., Simple procedure for evaluating the impedance matrix of fractal and fractile arrays, Progress in Electromagnetics Research M 14: 61-70 (2010).
  • [8] Werner D. H., Werner P. L., Church K. H., Genetically engineered multiband fractal antenna, IEE Electronics Letters online 37(9): 1150-1151 (2001).
  • [9] Choo H., Rogers R. L., Ling H., Design of electrically small wire antennas using a pareto genetic algorithm, IEEE Transactions on Antennas and Propagation 53(3): 1038-1046 (2005).
  • [10] Venkataraman P., Applied Optimization with Matlab Programing 2nd Ed, Wiley (2009).
  • [11] Marco A. P., Carlos D. R., Design of beam-forming networks using CORPS and evolutionary optimization, International Journal of Electronics and Communications AEUE Elsevier 63(5): 353-365 (2009).
  • [12] Jin N., Rahmat S. Y., Parallel particle swarm optimization and finite difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs, IEEE Transaction on Antennas and Propagation 53(11): 3459-3468 (2005).
  • [13] Eberhart R. C., Shi Y., Particle swarm optimization: developments, applications and resources, Proceeding of the Congress on Evolutionary Computation, pp. 81-86 (2001).
  • [14] Jin N., Rahmat S. Y., Advances in particle swarm optimization for antenna design: real-number, binary, single-objective and multiobjective implementations, IEEE Transaction on Antennas and Propagation 55(3): 556-567 (2007).
  • [15] Boeringer D., Werner D., Particle swarm optimization versus Genetic algorithms for phased array synthesis, IEEE Transaction on Antennas and Propagation 52(3): 771-779 (2004).
  • [16] Eberhart R. C., Shi Y., Evolving artificial neural networks. Proceeding of the International Conference on Neural Networks and Brain, PL5-PL13 (1998).
  • [17] John C. T., All Bezier curves are attractors of iterated function systems, New York Journal of Mathematics 13: 107-115 (2007).
  • [18] Valle L., Rivas F., Catedra M. F., Combining the moment method with geometrical modelling by NURBS surfaces and Bezier patches, IEEE Transactions on Antennas and Propagation 42(3): 373-381 (1994).
  • [19] John M., Ammann M., Spline based geometry for printed monopole antennas, Electronics Letters 43(6): 317-319 (2007).
  • [20] Piegl L., Tiller W., Curve and surface constructions using rational B-splines, Computer Aided Design 19(9): 485-489 (1987).
  • [21] Kennedy J., Eberhart R. C., Swarm Intelligence, Morgan Kaufmann Publisher (2001).
  • [22] Marco A. P., Carlos A. B., Luz I. B., Diana A. A., A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays, Progress In Electromagnetics Research 13: 171-186 (2009).
  • [23] Robinsonand J., Rahmat S. Y., Particle swarm optimization in electromagnetic, IEEE Transaction on Antennas and Propagation 52(2): 397-407 (2004).
  • [24] Huang T., Mohan A., A hybrid boundary condition for robust particle swarm optimization, IEEE Antennas Wireless Propagation Letters 5: 112-117(2005).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7981140-b0b3-4690-9432-420ab2296c19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.