Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the existence and nonexistence of nonnegative radial solutions to exterior problems of the form ΔHmu(q)+λψ(q)K(r(q))f(r2−Q(q),u(q))=0 in Bc1 , under the Dirichlet boundary conditions u=0 on ∂B1 and limr(q)→∞u(q)=0 . Here, λ≥0 is a parameter, ΔHm is the Kohn Laplacian on the Heisenberg group Hm=R2m+1 , m>1 , Q=2m+2 , B1 is the unit ball in Hm, Bc1 is the complement of B1 , and ψ(q)=∣∣z∣∣2r2(q) . Namely, under certain conditions on K and f , we show that there exists a critical parameter λ∗∈(0,∞] in the following sense. If 0≤λ<λ∗ , the above problem admits a unique nonnegative radial solution uλ ; if λ∗<∞ and λ≥λ∗ , the problem admits no nonnegative radial solution. When 0≤λ<λ∗ , a numerical algorithm that converges to uλ is provided and the continuity of uλ with respect to λ , as well as the behavior of uλ as λ→λ∗− , are studied. Moreover, sufficient conditions on the the behavior of f(t,s) as s→∞ are obtained, for which λ∗=∞ or λ∗<∞ . Our approach is based on partial ordering methods and fixed point theory in cones.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220193
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
Bibliografia
- [1] V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Ration. Mech. Anal. 99 (1987), 283–300.
- [2] Y. Deng and Y. Li, On the existence of multiple positive solutions for a semilinear problem in exterior domains, J. Differential Equations 181 (2002), 197–229.
- [3] R. Dhanya, Q. Morris, and R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), 1533–1548.
- [4] A. Orpel, On the existence of positive radial solutions for a certain class of elliptic BVPs, J. Math. Anal. Appl. 299 (2004), 690–702.
- [5] J. Santanilla, Existence and nonexistence of positive radial solutions of an elliptic Dirichlet problem in an exterior domain, Nonlinear Anal. 25 (1995), 1391–1399.
- [6] D. Butler, E. Ko, E. Lee, and R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2713–2731.
- [7] E. Ko, E. Lee, and R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain, Discrete Contin. Dyn. Syst. 33 (2013), 5153–5166.
- [8] V. Krishnasamy and L. Sankar, Singular semilinear elliptic problems with asymptotically linear reaction terms, J. Math. Anal. Appl. 486 (2020), 123869.
- [9] E. K. Lee, R. Shivaji, and B. Son, Positive radial solutions to classes of singular problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), no. 2, 1597–1611.
- [10] A. Orpel, Connected sets of positive solutions of elliptic systems in exterior domains, Monatsh Math. 191 (2020), 761–778.
- [11] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
- [12] G. D. Han and J. J. Wang, Multiple positive radial solutions of elliptic equations in an exterior domain, Monatsh. Math. 148 (2006), 217–228.
- [13] C. G. Kim, E. K. Lee, and Y. H. Lee, Existence of the second positive radial solution for a p-Laplacian problem, J. Comput. Appl. Math. 235 (2011), 3743–3750.
- [14] Y. H. Lee, Eigenvalues of singular boundary value problems and existence results for positive radial solutions of semilinear elliptic problems in exterior domains, Differ. Integral Equations 13 (2000), 631–648.
- [15] R. Stańczy, Positive solutions for superlinear elliptic equations, J. Math. Anal. Appl. 283 (2003), 159–166.
- [16] R. Johnson, X. Pan, and Y. Yi, Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Equations 18 (1993), 977–1019.
- [17] W. M. Ni and E. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of ( )+ =u f u rΔ , 0, Comrn. Pure Appl. Math. 38 (1985), 67–108.
- [18] G. M. Bisci and D. Repovš, Yamabe-type equations on Carnot groups, Potential Anal. 46 (2017), 369–383.
- [19] S. Bordoni, R. Filippucci, and P. Pucci, Nonlinear elliptic inequalities with gradient terms on the Heisenberg group, Nonlinear Anal. 121 (2015), 262–279.
- [20] S. Bordoni, R. Filippucci, and P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal. 30 (2020), 1887–1917.
- [21] A. Kassymov and D. Suragan, Multiplicity of positive solutions for a nonlinear equation with the Hardy potential on the Heisenberg group, Bull. Sci. Math. 165 (2020), 102916.
- [22] F. Safari and A. Razani, Existence of positive radial solutions for Neumann problem on the Heisenberg group, Bound Value Probl. 88 (2020), 1–14.
- [23] F. Safari and A. Razani, Existence of radial solutions of the Kohn-Laplacian problem, Complex Var. Elliptic Equ. 67 (2022), no.22, 259–273.
- [24] H. Aydi, M. Jleli, and B. Samet, On positive solutions for a fractional thermostat model with a convex-concave source term via ψ-Caputo fractional derivative, Mediterr. J. Math. 17 (2020), 1–16.
- [25] M. Berzig and B. Samet, Positive fixed points for a class of nonlinear operators and applications, Positivity. 17 (2013), 235–255.
- [26] D. Guo, Fixed points of mixed monotone operators with application, Appl. Anal. 34 (1988), 215–224.
- [27] D. Guo, Periodic boundary value problems for second order impulsive integro-differential equations in Banach spaces, Nonlinear Anal. 28 (1997), 983–997.
- [28] D. Guo, Existence of solutions for nth order impulsive integro-differential equations in a Banach space, Nonlinear Anal. 47 (2001), 741–752.
- [29] D. Guo, Y. Cho, and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, New York, 2004.
- [30] X. Z. Liu and D. Guo, Method of upper and lower solutions for second order impulsive integro-differential equations in a Banach space, Comput. Math. Appli. 38 (1999), 213–223.
- [31] C. Romero, Potential Theory for the Kohn Laplacian on the Heisenberg Group, Diss. University of Minnesota, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a795675d-d3e8-453d-9696-8dd214524264
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.