PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sewage treatment plant, as a producer of renewable energy, should make every effort to ensure that the biogas used as a fuel meets the quality requirements, including those of the manufacturers of cogeneration units. Such measures necessitate the application of a conditioning process of biogas in order to remove harmful compounds, so that its parameters ensure failure-free operation of engines. The aim of the research was to evaluate the effectiveness of biogas treatment in the A-type installation using the “wet biogas treatment” technology, and in the B-type installation, which is a comprehensive solution comprising sulfur removal as a result of a simultaneous regeneration of the bed with oxygen, removal of siloxanes on activated carbon, cooling and heating of biogas along with its filtration. The analysis of the results of biogas testing for these two installations demonstrated fundamental qualitative differences for the benefit of the installation B, in which the biogas was characterized by a much lower content, mainly of sulfur, hydrogen sulfide, siloxanes and humidity. The introduced pollution indicator of a megawatt hour produced in cogeneration one has confirmed much higher pollution load from the A-type installation. The hybrid solution applied in the work with simultaneous regeneration of the bed has confirmed the efficiency of biogas conditioning. Such a solution contributes to a safe and reliable operation of the cogeneration system for generating energy from a renewable source, which in turn contributes to the optimization of energy.
Rocznik
Strony
232--245
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Institute of Engineering, State University of Applied Sciences in Nowy Sącz, Zamenhofa 1A, 33-300 Nowy Sącz, Poland
  • Institute of Engineering, State University of Applied Sciences in Nowy Sącz, Zamenhofa 1A, 33-300 Nowy Sącz, Poland
  • Sądeckie Wodociągi Sp. z o.o., Aleja W. Pola 22, 33-300 Nowy Sącz, Poland
Bibliografia
  • 1. Álvarez-Flórez J., Egusquiza E. 2015. Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas. Engineering Failure Analysis, 50, 9–38. https://doi.org/10.1016/j.engfailanal.2015.01.010
  • 2. Amaraibi R.J., Joseph B., Kuhn J. 2022. Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. Journal of Environmental Management, 314, 115070. https://doi.org/10.1016/j.jenvman.2022.115070
  • 3. Arnold M. 2009. Reduction and monitoring of biogas trace compounds, VTT Tiedotteita-Research Notes; Julkaisija. https://www.vttresearch.com/sites/default/files/pdf/tiedotteet/2009/T2496.pdf, [accessed 13 June 2022]
  • 4. Barzegaravval H., Hosseini S.E, Wahid M.A., Saat A. 2018. Effects of fuel composition on the economic performance of biogas-based power generation systems. Applied Thermal Engineering, 128, 1543–1554. https://doi.org/10.1016/j.applthermaleng.2017.09.109
  • 5. Cavaignac R.S., Newton L., Ferreira N.L., Guardani R. 2012. Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing. Renewable Energy, 171, 868–880. https://doi.org/10.1016/j.renene.2021.02.097
  • 6. Ciuła J. 2022. Analysis of the effectiveness of wastewater treatment in activated sludge technology with biomass recirculation. Architecture Civil Engineering Environment, 15(2), 123–134, https://doi.org/10.2478/acee-2022-0020
  • 7. Ciuła J., Generowicz A., Gaska K., Gronba-Chyła A. 2022. Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study. Journal of Ecological Engineering, 23, 143–156. https://doi.org/10.12911/22998993/149609.
  • 8. Czekała W., Smurzyńska A., Kozłowski K., Brzoski W, Chełkowski D., Gajewska K. 2017. Sewage sludge co-digestion as a way of recycling waste and producing, Problemy Inżynierii Rolniczej 25, 5–14. https://www.cabdirect.org/cabdirect/abstract/20173311459, [accessed 28 May 2022]
  • 9. den Boer E., den Boer J., Hakalehto E. 2020. Volatile fatty acids production from separately collected municipal biowaste through mixed cultures fermentation. Journal of Water Process Engineering, 38, 101582, https://doi.org/10.1016/j.jwpe.2020.101582
  • 10. Dev N., Samsher, K.S., Attri R. 2014. Development of reliability index for cogeneration cycle power plant using graph theoretic approach. International Journal of System Assurance Engineering and Management, 5, 700–710. https://doi.org/10.1007/s13198-014-0235-4
  • 11. Dewil R., Appels L., Baeyens J., Buczynska A., van Vaeck L. 2007. The analysis of volatile siloxanes in waste activated sludge. Talanta, 74, 14–19. https://doi.org/10.1016/j.talanta.2007.05.041
  • 12. Díaz I., Ramos I., Fdz-Polanco M. 2015. Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresource Technology. 192, 280–286. https://doi.org/10.1016/j.biortech.2015.05.048
  • 13. Dyachok V., Venhe L., Huhlych S. 2022. The Biomethanization Gas Purification of Using Chlorophyll-Synthesizing Microalgae. Journal of Ecological Engineering, 23(9), 259–264. https://doi.org/10.12911/22998993/151990
  • 14. Dyjakon A., den Boer J., Szumny A., den Boer E. 2019. Local Energy Use of Biomass from Apple Orchards-An LCA Study. Sustainability, 11, 1604. https://doi.org/10.3390/su1106160
  • 15. Gaj K. 2020. Adsorptive Biogas Purification from Siloxanes-A Critical Review. Energies 13, 2605. https://doi.org/10.3390/en13102605
  • 16. Garrido-Baserba M., Hospido A., Reif R., Molinos-Senante M., Comas J., Poch M. 2014. Including the environmental criteria when selecting a wastewater treatment plant. Environmental Modelling & Software, 56, 74–82. https://doi.org/10.1016/j.envsoft.2013.11.008
  • 17. Graz K., Kwaśny J. 2021. Microplastics in composts as a barrier to the development of circular economy. Architecture Civil Engineering Environment, 14, 137–144. https://doi.org/10.21307/ACEE-2021-037
  • 18. Gronba-Chyła A., Generowicz A., Kwaśnicki P., Cycoń D., Kwaśny J., Grąz K., Gaska K., Ciuła J. 2022. Determining the Effectiveness of Street Cleaning with the Use of Decision Analysis and Research on the Reduction in Chloride in Waste, Energies, 15, 3538. https://doi.org/10.3390/en15103538
  • 19. Grosser A., Neczaj E. 2016. Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Conversion and Management, 125, 301–308. https://doi.org/10.1016/j.enconman.2016.05.089
  • 20. Gvozdenac D., Urošević B.G., Menke C., Urošević C., Bangviwat A. 2017. High efficiency cogeneration: CHP and non-CHP energy. Energy, 135, 269–278. https://doi.org/10.1016/j.energy.2017.06.143
  • 21. Halaby A., Ghoneim W., Helal A. 2017. Sensitivity analysis and comparative studies for energy sustainability in sewage treatment. Sustainable Energy Technologies and Assessments, 19, 42–50. https://doi.org/10.1016/j.seta.2016.11.004
  • 22. Ishchenko V., Pohrebennyk V., Kochanek A., Przydatek G. 2017. Comparative environmental analysis of waste processing methods in paper recycling. 17th International Multidisciplinary Scientific Geo-Conference SGEM 2017 17(51) 227–234. https://doi.org/10.5593/sgem2017/51/S20.030
  • 23. Kalsum L., Rusdianasari Hasan A. 2022. The Effect of the Packing Flow Area and Biogas Flow Rate on Biogas Purification in Packed Bed Scrubber. Journal of Ecological Engineering, 23(11), 49–56. https://doi.org/10.12911/22998993/153569
  • 24. Khoiyangbam R., Gupta N., Kumar S. 2011. Biogas Technology: towards sustainable development. The Energy and Resources Institute TERI, 1–18. https://www.researchgate.net/publication/261136066_Biogas_Technology_towards_sustainable_development, [accessed 07 June 2022]
  • 25. Kim Y., Kawahara N., Tsuboi K., Tomita E. 2016. Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine. Applied Energy, 182, 539–547. https://doi.org/10.1016/j.apenergy.2016.08.152
  • 26. Koc-Jurczyk J., Jurczyk L., Balawejder M., Kisala J. 2022. The impact of 3,3’,5,5’-tetrabromobisphenol-A (TBBPA) solution pretreatment by ozonolysis and photocatalysis on the activated sludge respirometric activity. Desalination and Water Treatment, 246, 1–11. https://doi.org/10.5004/dwt.2022.28035
  • 27. Kowalski S. 2018. Fretting Wear in Selected Elements of Rail Vehicles. Tehnicki Vjesnik-Technical Gazette, 25, 481–486. https://doi.org/10.17559/TV-20160601144609
  • 28. Kowalski S. 2021. Influence of diamond-like carbon coatings on the wear of the press joint components. Wear, 204076, 486–487. https://doi.org/10.1016/j.wear.2021.204076
  • 29. Kowalski S., Opoka K., Ciuła J. 2022. Analysis of the end-of-life the front suspension beam of a vehicle. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 24(3), 446–454. http://doi.org/10.17531/ein.2022.3.6
  • 30. Kowalski Z., Kulczycka J., Verhé R., Desender L., De Clercq G., Makara A., Generowicz N., Harazin P. 2022. Second-generation biofuel production from the organic fraction of municipal solid waste. Frontiers in Energy Research, 10, 919415, 1–15. https://doi.org/10.3389/fenrg.2022.919415
  • 31. Kozłowski D., Ignatowicz K. 2021. Effect of Dosing PIX 113 Coagulant to the Batch on Mesophilic Fermentation Process and Reducing Hydrogen Sulfide Content in Biogas. Journal of Ecological Engineering, 23(11), 286–293. https://doi.org/10.12911/22998993/154771
  • 32. Laizāns A., Vardanjan R. 2017. Mathematical Modelling of Biogas Dehumidification by Using of Counter Flow Heat Exchanger. Journal of Clean Energy Technologies, 2(5). httpws://doi: 10.18178/JOCET.2017.5.2.364
  • 33. Nyamukamba P., Mukumba P., Chikukwa E.S., Makaka G. 2020. Biogas Upgrading Approaches with Special Focus on Siloxane Removal-A Review. Energies, 13, 6088. https://doi.org/10.3390/en13226088
  • 34. Pittmann T., Steinmetz, H. 2017. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants. Bioengineering, 4, 54. https://doi.org/10.3390/bioengineering4020054
  • 35. Santos-Clotas E., Cabrera-Codony A., Boada E., Gich F., Muñoz R., Martín J.M. 2029. Efficient removal of siloxanes and volatile organic compounds from sewage biogas by an anoxic biotrickling filter supplemented with activated carbon. Bioresource Technology, 294, 122136. https://doi.org/10.1016/j.biortech.2019.122136
  • 36. Sigot L., Ducom G., Benadda B., Labouré C. 2014. Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification. Fuel, 135, 205–209. https://doi.org/10.1016/j.fuel.2014.06.058
  • 37. Smol M., Włodarczyk-Makuła M., Skowron-Grabowska B. 2017. PAHs removal from municipal landfill leachate using integrated membrane system aspect of legal regulation, Desalination Water Treatment, 69, 335–343. https://doi.org/10.5004/dwt.2017.20241
  • 38. Soreanu G., Beland M., Falletta P, Edmonson K., Svoboda L., Al-Jamal M. 2011. Approaches concering siloxane removal from biogas - A review. Canadian Biosystems Engineering, 8. https://library.csbe-scgab.ca/docs/journal/53/C0815.pdf, [accessed 24 May 2022]
  • 39. Sowa S. 2020. Increase in the Energy Efficiency of Facilities by Using RES Systems as a Criterion for Environmental Quality Improvement. Journal of Ecological Engineering, 21(7), 204–209. https://doi.org/10.12911/22998993/125554
  • 40. Stanuch L., Biegańska J. 2014. Siloxane in the biogas. Archives of Waste Management and Environmental Protection, 16, 1–8. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-647f454f-7629-4bb7-af08-dc6e3c62fe54, [accessed 21 September 2022]
  • 41. Statistica, version13.3, 2017. TIBCOI Software Inc. USA.
  • 42. Sun Q., Wang Y., Liu S. 2014. Biogas production via anaerobic digestion, In: Liu Z. Gas biofuels from waste biomass: principles ang advances, Nova Science Publishers, New York.
  • 43. Szlęk M. 2012. Analysis of global trends in the determination of biogas trace components. Nafta-Gaz, 69, 821–826. http://www.archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta-Gaz-2012-11-07.pdf, [accessed 27 July 2022].
  • 44. Tansel B., Surita S.C. 2019. Managing siloxanes in biogas-to-energy facilities: Economic comparison of pre- vs post-combustion practices. Waste Management, 96, 121–127. https://doi.org/10.1016/j.wasman.2019.07.019
  • 45. Tappen S.J., Aschmann V., Effenberger M. 2017. Lifetime development and load response of the electrical efficiency of biogas-driven cogeneration units. Renewable Energy, 114, 857–865. https://doi.org/10.1016/j.renene.2017.07.043
  • 46. Turker M., Baspinar A.B., Hocalar A. 2012. Monitoring and control of biogas desulphurization using oxidation reduction potential under denitrifiying conditions. Journal of Chemical Technology & Biotechnology, 87, 682–688. https://doi.org/10.1002/jctb.2765
  • 47. Wiewiórska I., Rybicki S.M. 2022. Analysis of a coagulation sludge contamination with metals using X-ray rystallography. Desalination and Water Treatment, 254, 151–159. https://doi.org/10.5004/dwt.2022.28372
  • 48. Williams I.D., Curran T., den Boer E., Perlt A., Lock D, Kent A., Wilding P. 2014. Resource efficiency network in the construction of new buildings. Waste end Resource Management, 167, 139–153. https://doi.org/10.1680/warm.13.00030
  • 49. Wysowska E., Wiewiórska I., Kicińska A. 2021. The impact of different stages of water treatment process on the number of selected bacteria, Water Resources and Industry, 26, 00167. https://doi.org/10.1016/j.wri.2021.100167
  • 50. Yingjian L., Qi Q., Xiangzhu H., Jiezhi L. 2014. Energy balance and efficiency analysis for power generation in internal combustion engine sets using biogas. Sustainable Energy Technologies and Assessments, 6, 25–33. https://doi.org/10.1016/j.seta.2014.01.003
  • 51. Zamorska-Wojdyla D., Gaj K., Holtra A., Sitarska M. 2012. Quality evaluation of biogas and selected methods of its analysis. Ecological Chemistry and Engineering, 19, 77–87. https://doi.org/10.2478/v10216-011-0008-9
  • 52. Zhang D., Zhang R., Zheng Y., Zhang B., Jiang Y., An Z., Bai J. 2022. Carbon emission reduction analysis of CHP system driven by biogas based on emission factors. Energy and Built Environment, 9, 1–13. https://doi.org/10.1016/j.enbenv.2022.05.002
  • 53. Zhang Y., Kawasaki Y., Oshita K., Takaoka M., Minami D., Inoue G., Tanaka T. 2020. Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renewable Energy, 168, 119–130. https://doi.org/10.1016/j.renene.2020.12.058
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a790b66f-326a-4764-b442-6553f42e4d9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.