Identyfikatory
Warianty tytułu
Selected issues of modeling of electrochemical cells and supercapacitors in electric vehicles
Języki publikacji
Abstrakty
W pracy przedstawiono problematykę modelowania elektrochemicznych magazynów energii stosowanych w pojazdach elektrycznych. Dokonano krótkiego przeglądu literaturowego, przedstawiając najważniejsze osiągnięcia nauki w dziedzinie modelowania procesów elektrochemicznych i starzeniowych ogniw. Opisano wybrane metody szacowania trwałości akumulatorów i zliczania mikrocykli ich pracy oraz przedstawiono autorską koncepcję szacowania trwałości w dowolnie krótkich okresach. Przedstawiono szereg badań służących weryfikacji opracowanej metody szacowania stanu zużycia ogniw, które przeprowadzono z wykorzystaniem akumulatorów typu NMC. Ponadto w artykule omówiono wybrane metody modelowania parametrów elektrycznych ogniw litowo-jonowych oraz superkondensatorów, szczegółowo opisując zagadnienia związane z procesami elektrochemicznymi w nich zachodzących. Przeprowadzono pomiary umożliwiające identyfikację modeli obwodowych ogniwa NMC i superkondensatora oraz wyznaczono parametry ich schematów zastępczych. Zaprezentowano również symulację komputerową, w której dokonano szczegółowej analizy energochłonności pojazdu, na podstawie której wyznaczono najważniejsze parametry pracy układów zasilających w kilku wariantach (zbudowanych z akumulatorów litowojonowych oraz superkondensatorów). Ponadto zaproponowano koncepcję przewidywania prędkości pojazdu za pomocą algorytmów wykorzystujących sieci neuronowe oraz sterujących pracą hybrydowego zasobnika energii celem wydłużenia trwałości ogniw litowojonowych. Uzyskane wyniki przedstawiono na wykresach i skomentowano.
The paper presents the problem of modelling of electrochemical energy storage used in electric vehicles. A short literature review was carried out, presenting the most important scientific achievements in the field of electrochemical and ageing cell process modelling. Selected methods of battery life estimation and counting microcycles of their operation were discussed and the author's concept of estimation of battery life in any short periods of time was presented. A number of tests to verify the developed method for estimating the state of cell consumption, which were carried out with the use of NMC type batteries, are presented. Moreover, the paper discusses selected methods of modelling electrical parameters of lithium-ion cells and supercapacitors, describing in detail the issues related to electrochemical processes occurring in them. The measurements enabling identification of NMC and supercapacitor peripheral models were carried out and the parameters of their equivalent circuit were determined. A computer simulation was also presented, in which a detailed analysis of the vehicle's energy consumption was made, on the basis of which the most important parameters of power supply systems in several variants (built of lithium-ion batteries and super capacitors) were determined. In addition, the concept of prediction of vehicle speed by means of algorithms using neural networks and controlling the operation of the hybrid energy storage in order to extend the life of lithium-ion cells has been proposed. The obtained results are presented in the diagrams and commented on.
Rocznik
Tom
Strony
3--55
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Politechnika Poznańska
Bibliografia
- [1] https://batteryuniversity.com/learn/article/types_of_lithium_ion, (05.12.2018).
- [2] Reddy T., Linden’s Handbook of Batteries, 4th ed., New York: McGraw-Hill Education, 2010.
- [3] Klein R., Chaturvedi N.A., Christensen J., Ahmed J., Findeisen R., Kojic A., Electrochemical Model Based Observer Design for a Lithium-Ion Battery Reinhardt, IEEE Transactions on Control Systems Technology, Volume 21, Issue 2, 2013, pp. 289–301.
- [4] Kasprzyk L., Modelling and analysis of dynamic states of the lead-acid batteries in electric vehicles. Eksploatacja i Niezawodnosc – Maintenance and Reliability, Volume 19, Issue 2, 2017, pp. 229–236.
- [5] Baccouche I., Jemmali S., Manai B., Omar N., Amara N.E.B., Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter, Energies, Volume 10, Number 6:764, 2017.
- [6] Smith K.A., Rahn C.D., Wang C.Y., Control oriented 1D electrochemical model of lithium ion battery, Energy Conversion and Management, Volume 48, Issue 9, 2007, pp. 2565–2578.
- [7] Jossen A., Fundamentals of battery dynamics. Journal of Power Sources, Volume 154, Issue 2, 2006, pp. 530–538.
- [8] Fotouhi A., Auger D.J., Propp K., Longo S., Wild M., A review on electric vehicle battery modelling: From Lithium-ion toward Lithium-Sulphur. Renewable and Sustainable Energy Reviews, Volume 56, 2016, pp. 1008–1021.
- [9] Waag W., Fleischer C., Sauer D.U., Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Journal of Power Sources, Volume 258, 2014, pp. 321–339.
- [10] Wei X., Zhu B., Xu W., Internal resistance identification in vehicle power lithium-ion battery and application in life time evaluation. Proceedings of the 2009 international conference on measuring technology and mechatronics automation, Volume 3, 2009, pp. 388–392.
- [11] Sauvant-Moynot V., Bernard J., Mingant R., Delaille A., Mattera F., Mailley S., Huet F., ALIDISSI, a Research Program to Evaluate Electrochemical Impedance Spectroscopy as a SoC and SoH Diagnosis Tool for Li-ion Batteries. Oil & Gas Science and Technology–Revue de l’Institut Francais du Petrolex, Volume 65, Issue 1, 2010, pp. 79–89.
- [12] Plett G.L., Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources, Volume 134, Issue 2, 2004, pp. 277–292.
- [13] Santhanagopalan S., White R.E., Online estimation of the state of charge of a lithium ion cell, Journal of Power Sources, Volume 161, Issue 2, 2006, pp. 1346–1355.
- [14] Pan H., Lü Z., Wang H., Wei H., Chen L., Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine, Energy, Volume 160, 2018, pp. 466–477.
- [15] Eddahech A., Briat O., Bertrand N., Delétage J.Y., Vinassa J.M., Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks, International Journal of Electrical Power & Energy Systems, Volume 42, Issue 1, 2012, pp. 487–494.
- [16] Rahbari O., Mayet C., Omar N., Van Mierlo J., Battery Aging Prediction Using Input-Time-Delayed Based on an Adaptive Neuro-Fuzzy Inference System and a Group Method of Data Handling Techniques, Applied Sciences, Volume 8, Issue 8:1301, 2018.
- [17] Kasprzyk L., Wybrane zagadnienia modelowania trwałości akumulatorów litowojonowych w pojazdach elektrycznych, Przegląd Elektrotechniczny, Volume 95, Number 3, 2019, pp. 70–73.
- [18] Ecker M., Gerschler J.B., Vogel J., Käbitz S., Hust F., Dechent P., Sauer D.U., Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data, Journal of Power Sources, Volume 215, 2012, pp. 248–257.
- [19] Omar N., Monem M.A., Firouz Y., Salminen J., Smekens J., Hegazy O., Van Mierlo J., Lithium iron phosphate based battery-assessment of the aging parameters and development of cycle life model, Applied Energy, Volume 113, 2014, pp. 1575–1585.
- [20] Santhanagopalan S., Smith K., Neubauer J., Kim G.H., Pesaran A., Keyser M., Design and analysis of large lithium-ion battery systems, London: Artech House, 2014.
- [21] http://mathworks.com/help/physmod/sps/powersys/ref/battery.html, (05.12.2018).
- [22] Rychlik I., A new definition of the rainflow cycle counting method. International Journal of Fatigue, Volume 9, Issue 2, 1987, pp. 119–121.
- [23] Kasprzyk L., Optimization of Lighting Systems with the use of the Parallelized Genetic Algorithm on Multi-Core Processors using the .NET Technology, Przegląd Elektrotechniczny, Volume 88, Number 7B, 2012, pp. 131–133.
- [24] De Levie R., Electrochemical response of porous and rough electrodes, Advances in Electrochemistry and Electrochemical Engineering, Volume 6, New York: Wiley–Interscience, 1967.
- [25] Bard A.J., Faulkner L.R., Electrochemical methods: fundamentals and applications, John Wiley & Sons, New York, 2001.
- [26] Doyle M., Fuller F.T., Newman J., Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, Journal of the Electrochemical Society, Volume 140, Issue 6, 1993, pp. 1526–1533.
- [27] Bergveld H.J., Battery Management Systems: Design by Modelling, University of Twente, 2001.
- [28] Barsali S., Ceraolo M., Dynamical Models of Lead-Acid Batteries: Implementation Issues, IEEE Transactions On Energy Conversion, Volume 17, Issue 1, 2002, pp. 16–23.
- [29] Naim M.N.N., PhD Thesis: Modelling the ageing behaviour of supercapacitors using electrochemical impedance spectroscopy for dynamic applications, University of Nottingham, 2015.
- [30] Belhachemi F., Rael S., Davat B., A physical based model of power electric double-layer supercapacitors, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, Volume 5, 2000, pp. 3069–3076.
- [31] Kötz R., Carlen M., Principles and applications of electrochemical capacitors, Electrochimica Acta, Volume 45, Number 15–16, 2000, pp. 2483–2498.
- [32] Faranda R., Gallina M., Son D.T., A new simplified model ofDouble-Layer Capacitors, Dipartimento di Elettrotecnica, Politecnico di Milano, Milan, 2013.
- [33] Faranda R., A new parameters identification procedure for simplified double layer capacitor two-branch model, Electric Power Systems Research, Volume 80, Issue 4, 2010, pp. 363–371.
- [34] Rizoug N., Bartholomeus P., Le Moigne P., Modeling and Characterizing Supercapacitors Using an Online Method, IEEE Transactions on Industrial Electronics, Volume 57, Number 12, 2010, pp. 3980–3990.
- [35] Fletcher S., Black V.J., Kirkpatrick I., A universal equivalent circuit for carbonbased supercapacitors, Journal of Solid State Electrochemistry, Volume 18, Number 5, 2014, pp. 1377–1387.
- [36] Buller S., Karden E., Kok D., De Doncker R.W., Modeling the dynamic behawior of supercapacitors using impedance spectroscopy, IEEE Transactions on Industry Applications, Volume 38, Number 6, 2002, pp. 1622–1626.
- [37] http://www.vboxmotorsport.co.uk, (05.10.2018).
- [38] Ślaski G., Ohde B., A statistical analysis of energy and power demand for the tractive purposes of an electric vehicle in urban traffic-an analysis of a short and long observation period, In IOP Conference Series: Materials Science and Engineering, IOP Publishing, Volume 148, Issue 1, 012027, 2016.
- [39] Dąbrowski K., Ślaski G., Method and algorithm of automatic estimation of road surface type for variable damping control, In IOP Conference Series: Materials Science and Engineering, IOP Publishing, Volume 148, Issue 1, 012028, 2016.
- [40] Kasprzyk L., Pojazdy elektryczne a problematyka doboru magazynu energii elektrycznej w aspekcie ochrony środowiska. Europejski Wymiar Bezpieczeństwa Energetycznego a Ochrona Środowiska, Volume 1, 2015, pp. 691–708.
- [41] Haykin S., Neural networks and learning machines, Pearson Education, 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a78acd23-3a91-436f-9866-c6f3a98276ce