Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigated wind erosion and soil particle distribution at the Sakaka Solar Power Plant in Saudi Arabia, assessing the potential impacts on solar panel efficiency and site management. Soil samples from various locations within the site were analyzed using a sieve-based approach and log-normal function fitting to characterize particle size distributions. The analysis revealed two consistent size modes across all samples: a primary mode centered around 524 μm and a secondary mode at approximately 168 μm, with an additional fine sand population around 100 μm. Wind erosion and soiling events were monitored using big spring number eight (BSNE) sediment samplers strategically placed around the site. Results showed significant spatial and temporal variations in sediment fluxes, with the highest rates observed in the West (149.05 kg/m), Southwest (47.14 kg/m), and Northwest (9.42 kg/m) sectors. The total drift during the study period was 205.61 kg/m, with 66% of the annual total occurring between May and August, aligning with the region’s known wind patterns. Detailed analysis of erosion events revealed that the western quadrant of the site consistently experienced the highest erosion fluxes, up to 13 times greater than those in the southern quadrant during peak events. The effectiveness of existing erosion control measures, such as a sand ridge 180 meters upwind of the western boundary, was found to be limited, reducing sand flux by only 58% at the nearest monitoring station. These findings highlight the critical need for targeted erosion mitigation strategies, particularly along the western perimeter of the solar plant. The study underscores the importance of considering soil texture and local wind patterns in the assessment and management of wind erosion risks at solar power installations in arid environments.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
83--94
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, College of Engineering, Northern Border University, Arar, 73222, Saudi Arabia
autor
- Institute of Arid Regions of Medenine, 4119 Medenine, Tunisia
autor
- Department of Civil Engineering, College of Engineering, Northern Border University, Arar, 73222, Saudi Arabia
autor
- AH Environmental Consulting, Khobar, Saudi Arabia
autor
- Al Jomaih Energy and Water (JENWA), Saudi Arabia
Bibliografia
- 1. ACWA Power. (n.d.). Sakaka PV IPP. Retrieved October 20, 2024, from https://acwapower.com/en/ projects/sakaka-pv-ipp/
- 2. Al-Dousari, A., Ramadan, A., Al-Qattan, A., Al-Ateeqi, S., Dashti, H., Ahmed, M., Al-Dousari, N., Al- Hashash, N., & Othman, A. (2020). Cost and effect of native vegetation change on aeolian sand, dust, microclimate and sustainable energy in Kuwait. Journal of Taibah University for Science, 14(1), 628–639. https://doi.org/10.1080/16583655.2020.1761662
- 3. Ali Sadat, S., Faraji, J., Nazififard, M., & Ketabi, A. (2021). The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment. Sustainable Energy Technologies and Assessments, 47, 101542. https://doi.org/10.1016/j.seta.2021.101542
- 4. Alshawaf, M., Poudineh, R., & Alhajeri, N. S. (2020). Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renewable and Sustainable Energy Reviews, 134, 110346. https://doi.org/10.1016/j.rser.2020.110346
- 5. Bauer, B. O., & Davidson-Arnott, R. G. D. (2014). Aeolian particle flux profiles and transport unsteadiness. Journal of Geophysical Research: Earth Surface, 119(7), 1542–1563. https://doi.org/10.1002/2014JF003128
- 6. Dida, M., Boughali, S., Bechki, D., & Bouguettaia, H. (2020). Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment. Renewable and Sustainable Energy Reviews, 124, 109787. https://doi.org/10.1016/j.rser.2020.109787
- 7. Ellis, J. T., Li, B., Farrell, E. J., & Sherman, D. J. (2009). Protocols for characterizing aeolian mass-flux profiles. Aeolian Research, 1(1), 19–26. https://doi.org/10.1016/j.aeolia.2009.02.001
- 8. Imam, A. A., Abusorrah, A., & Marzband, M. (2024). Potentials and opportunities of solar PV and wind energy sources in Saudi Arabia: Land suitability, techno-socio-economic feasibility, and future variability. Results in Engineering, 21, 101785. https://doi.org/10.1016/j.rineng.2024.101785
- 9. IRENA. (2023). World Energy Transitions Outlook 2023: 1.5°C Pathway. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/ Files/IRENA/Agency/Publication/2023/Jun/IRENA_ World_energy_transitions_outlook_summary_2023. pdf?rev=bdaa6280cdef47dcb7bf5dfcfc75b88f
- 10. Labiadh, M. T., Ghazouani, N., Dhamane, S. R., Rezgui, A., AlKhoshi, Y., & Alassaf, Y. (2024). Towards a Quantification of Sand Accumulation Near Sakaka Solar Farm: Experimental Approach and Development of Mitigation Measures. In M. Ksibi, A. Negm, O. Hentati, A. Ghorbal, A. Sousa, J. Rodrigo-Comino, S. Panda, J. Lopes Velho, A. M. El-Kenawy, & N. Perilli (Eds.), Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) (pp. 567–570). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43922-3_128
- 11. Labiadh, M. T., Rajot, J. L., Sekrafi, S., Ltifi, M., Attoui, B., Tlili, A., Hlel, M., Bergametti, G., des Tureaux, T. H., & Bouet, C. (2023). Impact of Land Cover on Wind Erosion in Arid Regions: A Case Study in Southern Tunisia. Land, 12(9), Article 9. https://doi.org/10.3390/land12091648
- 12. Ma R, Wang JH, Qu JJ, Liu J, Sun T, & Wei L. (2010). Study on protective effect of difference types of cotton haulm sand barriers. Journal of Soil and Water Conservation, 24(2), 48–51.
- 13. Majeed, R., Waqas, A., Sami, H., Ali, M., & Shahzad, N. (2020). Experimental investigation of soiling losses and a novel cost-effective cleaning system for PV modules. Solar Energy, 201, 298–306. https://doi.org/10.1016/j.solener.2020.03.014
- 14. Meng, B., Gao, C., Lv, S., Han, G., Li, Z., Li, J., Wu, Q., & Zhang, F. (2024). The effects of grazing and the meteorologic factors on wind-sand flux in the desert steppe. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1428828
- 15. Poortinga, A., Keijsers, J. G. S., Maroulis, J., & Visser, S. M. (2014). Measurement uncertainties in quantifying aeolian mass flux: Evidence from wind tunnel and field site data. PeerJ, 2, e454. https://doi.org/10.7717/peerj.454
- 16. Ren, H., Gao, X., Zhao, Y., Lei, J., De Maeyer, P., & De Wulf, A. (2024). Strong-wind events control barchan dune migration. Communications Earth & Environment, 5(1), 1–9. https://doi.org/10.1038/s43247-024-01444-1
- 17. REN21. (2023). Renewables 2023 Global Status Report Collection.
- 18. Said, S. Z., Islam, S. Z., Radzi, N. H., Wekesa, C. W., Altimania, M., & Uddin, J. (2024). Dust impact on solar PV performance: A critical review of optimal cleaning techniques for yield enhancement across varied environmental conditions. Energy Reports, 12, 1121–1141. https://doi.org/10.1016/j.egyr.2024.06.024
- 19. Tang, G., Meng, Z., Gao, Y., & Dang, X. (2021). Impact of utility-scale solar photovoltaic array on the aeolian sediment transport in Hobq Desert, China. Journal of Arid Land, 13(3), 274–289. https://doi.org/10.1007/s40333-021-0096-y
- 20. VAR23. (2023). Vision 2030 Annual Report. Vision realization Office. https://www.vision2030.gov.sa/ en/annual-reports
- 21. Vickery, K., & Eckardt, F. (2021). A closer look at mineral aerosol emissions from the Makgadikgadi Pans, Botswana, using automated SEM-EDS (QEMSCAN®). South African Geographical Journal, 103(1), 7–21. https://doi.org/10.1080/0373624 5.2020.1824805
- 22. Wang, C., Hill, R. L., Bu, C., Li, B., Yuan, F., Yang, Y., Yuan, S., Zhang, Z., Cao, Y., & Zhang, K. (2021). Evaluation of wind erosion control practices at a photovoltaic power station within a sandy area of northwest, China. Land Degradation & Development, 32(4), 1854–1872. https://doi.org/10.1002/ldr.3839
- 23. Wang, T., Liu, B., Tan, L., Niu, Q., Shi, B., Zhang, K., & Li, Z. (2024). Aeolian transport within a large-scale concentrated solar power plant in the Gobi region. Geomorphology, 455, 109186. https://doi.org/10.1016/j.geomorph.2024.109186
- 24. Weather Maps | Live Satellite & Weather Radar. (n.d.). Meteoblue. Retrieved October 20, 2024, from https://www.meteoblue.com/en/weather-maps
- 25. Windfinder.com. (n.d.). Windfinder—Wind, wave & weather reports, forecasts & statistics worldwide. Windfinder.Com. Retrieved October 20, 2024, from https://www.windfinder.com
- 26. Yao, Z., Xiao, J., Xie, X., Zhu, H., & Qu, J. (2022). Design of optimal sand fences around a desert solar park—A case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park. Natural Hazards, 113(1), 673–697. https://doi.org/10.1007/s11069-022-05319-6
- 27. Zhao, W., Lv, Y., Wei, Z., Yan, W., & Zhou, Q. (2021). Review on dust deposition and cleaning methods for solar PV modules. Journal of Renewable and Sustainable Energy, 13(3), 032701. https://doi.org/10.1063/5.0053866
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a78aa7cb-2f62-449c-b90e-bbff677c0a36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.