PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On the p-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we deal with the following p-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: [formula], where [...] and k are some positive parameters, […] is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions V and M satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.
Wydawca
Rocznik
Strony
art. no. 20230124
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • College of Mathematics, Changchun Normal University, Changchun, 130032, P. R. China
  • College of Mathematics, Changchun Normal University, Changchun, 130032, P. R. China
  • Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, 1000, Slovenia
  • Institute of Mathematics, Physics and Mechanics, Ljubljana, 1000, Slovenia
Bibliografia
  • [1] P. d’Avenia, G. Siciliano, and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci. 25 (2015), no. 8, 1447–1476, DOI: https://doi.org/10.1142/S0218202515500384.
  • [2] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), no. 4–6, 298–305, DOI: https://doi.org/10.1016/S0375-9601(00)00201-2.
  • [3] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
  • [4] D. Cassani and J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper critical growth, Adv. Nonlinear Anal. 8 (2019), no.1, 1184–1212, DOI: https://doi.org/10.1515/anona-2018-0019.
  • [5] P. Ma and J. Zhang, Existence and multiplicity of solutions for fractional Choquard equations, Nonlinear Anal. 164 (2017), 100–117, DOI: https://doi.org/10.1016/j.na.2017.07.011.
  • [6] A. Panda, D. Choudhuri, and K. Saoudi, A critical fractional Choquard problem involving a singular nonlinearity and a Radon measure, J. Pseudo-Differ. Oper. Appl. 12 (2021), no. 1, 1–19, DOI: https://doi.org/10.1007/s11868-021-00382-2.
  • [7] D. Choudhuri, D. D. Repovš, and K. Saoudi, On elliptic problems with Choquard term and singular nonlinearity, Asymptot. Anal. 133 (2023), no. 1–2, 255–266, DOI: https://doi.org/10.3233/asy-221812.
  • [8] Y. Song and S. Shi, Infinitely many solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 (2019), no. 4, 3223–3232, DOI: https://doi.org/10.1007/s13398-019-00688-3.
  • [9] Y. Song and S. Shi, Existence and multiplicity of solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Appl. Math. Lett. 92 (2019), 170–175, DOI: https://doi.org/10.1016/j.aml.2019.01.017.
  • [10] A. Iannizzotto, S. Liu, and K. Perera, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc Var. 9 (2016), no. 2, 101–125, DOI: https://doi.org/10.1515/acv-2014-0024.
  • [11] M. Xiang, B. Zhang, and M. Ferrara, Existence of solutions for Kirchhoff-type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), no. 2, 1021–1041, DOI: https://doi.org/10.1016/j.jmaa.2014.11.055.
  • [12] M. Souza, On a class of nonhomogeneous fractional quasilinear equtions in N with exponential growth, Nonlinear Differ. Equ. Appl. 22 (2015), 499–511, DOI: https://doi.org/10.1007/s00030-014-0293-y.
  • [13] N. Nyamoradi and A. Razani, Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities, Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), no. 4, 1321–1332, DOI: https://doi.org/10.1007/s10473-021-0418-4.
  • [14] F. Gao and M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl. 448 (2017), no. 2, 1006–1041, DOI: https://doi.org/10.1016/j.jmaa.2016.11.015.
  • [15] S. Liang and J. H. Zhang, Multiplicity of solutions for the noncooperative Schrödinger-Kirchhoff system involving the fractional p-Laplacian in RN , Z. Angew. Math. Phys. 68 (2017), no. 3, 18 pp, DOI: https://doi.org/10.1007/s00033-017-0805-9.
  • [16] S. Liang, G. M. Bisci, and B. L. Zhang, Multiple solutions for a noncooperative Kirchhoff-type system involving the fractional p-Laplacian and critical exponents, Math. Nachr. 291 (2018), no. 10, 1533–1546, DOI: https://doi.org/10.1002/mana.201700053.
  • [17] S. Liang and S. Shi, Soliton solutions to Kirchhoff-type problems involving the critical growth in RN , Nonlinear Anal. 81 (2013), 31–41, DOI: https://doi.org/10.1016/j.na.2012.12.003.
  • [18] S. Liang, D. D. Repovš, and B. Zhang, On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity, Comput. Math. Appl. 75 (2018), no. 5, 1778–1794. DOI: https://doi.org/10.1016/j.camwa.2017.11.033
  • [19] S. Liang, L. Wen, and B. Zhang, Solutions for a class of quasilinear Choquard equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear Anal. 198 (2020), 111888, 18 pp, DOI: https://doi.org/10.1016/j.na.2020.111888.
  • [20] P. Pucci, M. Xiang, and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff-type equations involving the fractional p-Laplacian in RN , Calc. Var. Partial Differ. Equ. 54 (2015), no. 3, 2785–2806, DOI: https://doi.org/10.1007/s00526-015-0883-5.
  • [21] P. Pucci, M. Xiang, and B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), no. 1, 27–55, DOI: https://doi.org/10.1515/anona-2015-0102.
  • [22] T. Mukherjee and K. Sreenadh, Fractional Choquard equation with critical nonlinearities, NoDEA Nonlinear Differential Equations Appl. 24(6) (2017), no. 6, 34 pp, DOI: https://doi.org/10.1007/s00030-017-0487-1.
  • [23] M. Xiang, B. Zhang, and V. Rădulescu, Superlinear Schrödinger-Kirchhoff-type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal. 9 (2020), no. 1, 690–709, DOI: https://doi.org/10.1515/anona-2020-0021.
  • [24] X. Zhang, B. L. Zhang, and D. Repovš, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal. 142 (2016), 48–68, DOI: https://doi.org/10.1016/j.na.2016.04.012.
  • [25] A. Fiscella and E. Valdinoci, A critical Kirchhoff-type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156–170, DOI: https://doi.org/10.1016/j.na.2013.08.011.
  • [26] G. Autuori, A. Fiscella, and P. Pucci, Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity, Nonlinear Anal. 125 (2015), 699–714, DOI: https://doi.org/10.1016/j.na.2015.06.014.
  • [27] K. Ho and Y. H. Kim, Apriori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(+)-Laplacian, Nonlinear Anal. 188 (2019), 179–201, DOI: https://doi.org/10.1016/j.na.2019.06.001.
  • [28] A. Panda and D. Choudhuri, Infinitely many solutions for a doubly nonlocal fractional problem involving two critical nonlinearities, Complex Var. Elliptic Equ. 67 (2022), 2835–2865. DOI: https://doi.org/10.1080/17476933.2021.1951719
  • [29] M. Squassina and B. Volzone, Bourgain-Brézis-Mironescu formula for magnetic operators, C. R. Math. 354 (2016), no. 8, 825–831, DOI: https://doi.org/10.1016/j.crma.2016.04.013.
  • [30] X. Mingqi, P. Pucci, M. Squassina, and B. Zhang, Nonlocal Schrödinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst. 37 (2017), no. 3, 1631–1649, DOI: https://doi.org/10.3934/dcds.2017067.
  • [31] Z. Binlin, M. Squassina, and X. Zhang, Fractional NLS equations with magnetic field,critical frequency and critical growth, Manuscripta Math. 155 (2018), no. 1–2, 115–140, DOI: https://doi.org/10.1007/s00229-017-0937-4.
  • [32] Y. Song and S. Shi, Existence and multiplicity solutions for the p-fractional Schrdinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity, Acta Appl. Math. 165 (2020), 45–63, DOI: https://doi.org/10.1007/s10440-019-00240-w.
  • [33] S. Liang, D. D. Repovš, and B. Zhang, Fractional magnetic Schrödinger-Kirchhoff problems with convolution and critical nonlinearities, Math. Models Methods Appl. Sci. 43 (2020), no. 5, 2473–2490, DOI: https://doi.org/10.1002/mma.6057.
  • [34] F. Wang and M. Xiang, Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differential Equations 2016 (2016), no. 306, 11 pp, DOI: https://ejde.math.txstate.edu/.
  • [35] A. Xia, Multiplicity and concentration results for magnetic relativistic Schrödinger equations, Adv. Nonlinear Anal. 9 (2020), no. 1, 1161–1186, DOI: https://doi.org/10.1515/anona-2020-0044.
  • [36] Y. Zhang, X. Tang, and V. Rădulescu, Small perturbations for nonlinear Schrödinger equations with magnetic potential, Milan J. Math. 88 (2020), no. 2, 479–506, DOI: https://doi.org/10.1007/s00032-020-00322-7.
  • [37] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Nonlinear Analysis - Theory and Applications, Springer, Cham, 2019. DOI: https://doi.org/10.1007/978-3-030-03430-6
  • [38] E. H. Lieb and M. Loss, Analysis, Vol. 14, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
  • [39] M. Xiang and X. Zhang, A nonhomogeneous fractional p-Kirchhoff-type problem involving critical exponent in RN , Adv. Nonlinear Stud. 17 (2017), no. 3, 611–640, DOI: https://doi.org/10.1515/ans-2016-6002.
  • [40] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24. Birkhäuser, Boston/Basel/Berlin, 1996. DOI: https://doi.org/10.1007/978-1-4612-4146-1
  • [41] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490, DOI: https://doi.org/10.2307/2044999.
  • [42] V. Benci, On critical point theory for indefinite functionals in presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), no. 2, 533–572, DOI: https://doi.org/10.2307/1999120.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7881d4e-d118-45ec-b3d8-6db77f73202c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.