PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piezoelectric effect on thermoelastic Lamb waves in functionally graded plates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the Lord–Shulman thermoelectric elasticity theory, the piezoelectric effect on the thermoelastic Lamb wave propagation in the functionally graded material (FGM) plate is investigated. The coupled wave equations are solved by employing the Legendre polynomial series approach (LSPA), which poses the advantages of small scale of eigenvalues matrix and a convenient solution. It can directly obtain the complex wave number solutions without iteration. The obtained complex solutions, which represent the wave propagation and attenuation, are compared with those available data. Numerical examples show that the influence of gradient is profound. Results indicate that the piezoelectric effects on attenuation with the open and closed circuit condition are consistent for the S0 and S1 modes, but are inconsistent for the A0 and A1 modes. Although the piezoelectric effect is weak on the dispersion and attenuation of thermal waves, it is notable for their physical field distributions. In addition, the relaxation time is critical to electric displacements of a thermal wave mode, but is not essential for those of Lamb-like modes. The results can be used for the optimization of thermo-electric-elastic coupling structures.
Rocznik
Strony
3--26
Opis fizyczny
Bibliogr. 38 poz, rys., tab., wykr.
Twórcy
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China, Xianhui Wang,
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China, Xianhui Wang,
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China, Xianhui Wang,
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China, Xianhui Wang,
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China, Xianhui Wang,
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China, Xianhui Wang,
Bibliografia
  • 1. S. Brischetto, E. Carrera, Refined 2D models for the analysis of functionally graded piezoelectric plates, Journal of Intelligent Material Systems and Structures, 20, 15, 1783–1797, 2009.
  • 2. Z. Su, G.Y. Jin, T.G. Ye, Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions, International Journal of Mechanical Sciences, 138, 42–53, 2018.
  • 3. M. Arefi, E.M.R. Bidgoli, R. Dimitri, M. Bacciocchi, F. Tornabene, Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate, Composites Part B-Engineering, 151, 35–50, 2018.
  • 4. M.K. Pal, A.K. Singh, On the characteristics of reflected waves in rotating functionally graded Initially stressed piezoelectric-orthotropic half-space, Waves in Random and Complex Media, 1–15, 2021, doi: 10.1080/17455030.2021.1892239.
  • 5. J.H. Guo, J.Y. Chen, E.N. Pan, A three-dimensional size-dependent layered model for simply-supported and functionally graded magnetoelectroelastic plates, ACTA Mechanica Solida Sinica, 31, 5, 652–671, 2018.
  • 6. P. Kumar, S.P. Harsha, Vibration response analysis of PZT-4/PZT-5H based functionally graded tapered plate subjected to electro-mechanical loading, Mechanics Research Communications, 116, 7, 103765, 2021.
  • 7. J. Lu, C. Yu, W. Xu, C. Chiu, Characteristic orthogonal polynomials-Ritz method for vibration behavior of functionally graded piezoelectric plates using FSDT, Computers & Mathematics with Applications, 98, 157–168, 2021.
  • 8. X.T. He, Y.Z. Wang, S.J. Shi, J.-Y. Sun, An electroelastic solution for functionally graded piezoelectric material beams with different moduli in tension and compression, Journal of Intelligent Material Systems and Structures, 29, 81649–81669, 2018.
  • 9. L. Sator, V. Sladek, J. Sladek, Analysis of coupling effects in FGM piezoelectric plates by a meshless method, Composite Structures, 244, 112256, 2020.
  • 10. R. Ansari, J. Torabi, M.F. Shojaei, Buckling analysis of axially-loaded functionally graded carbon nanotube-reinforced composite conical panels using a novel numerical variational method, Composite Structures, 157, 398–411, 2016.
  • 11. J. Torabi, R. Ansari, R. Hassani, Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory, European Journal of Mechanics - A/Solids, 73, 44–160, 2019.
  • 12. M. Komijani, J.N. Reddy, A. Ferreira, Nonlinear stability and vibration of pre/postbuckled microstructure-dependent FGPM actuators, Meccanica, 49, 11, 2729–2745, 2014.
  • 13. K. Zhou, Z.M. Hu, H.X. Hua, Investigation on the nonstationary stochastic response of functionally graded piezoelectric material plates with general boundary conditions, Applied Mathematical Modelling, 96, 315–335, 2021.
  • 14. A. Norouzzadeh, R. Ansari, H. Rouhi, Nonlinear wave propagation analysis in Timoshenko nano-beams considering nonlocal and strain gradient effects, Meccanica, 53, 3415–3435, 2018.
  • 15. X. Guo, P.J. Wei, L. Li, M. Lan, Effects of functionally graded interlayers on dispersion relations of shear horizontal waves in layered piezoelectric/piezomagnetic cylinders, Applied Mathematical Modelling, 55, 569–582, 2018.
  • 16. H. Ezzin, B. Wang, Z.H. Qian, Propagation behavior of ultrasonic Love waves in functionally graded piezoelectric-piezomagnetic materials with exponential variation, Mechanics of Materials, 148, 103492, 2020.
  • 17. M.S. Chaki, A.K. Singh, The impact of reinforcement and piezoelectricity on SH wave propagation in irregular imperfectly-bonded layered FGPM structures: an analytical approach, European Journal of Mechanics - A/Solids, 80, 103872, 2020.
  • 18. C.L. Li, Q. Han, Guided waves propagation in sandwich cylindrical structures with functionally graded graphene-epoxy core and piezoelectric surface layers, Journal of Sandwich Structures and Materials, 23, 8, 3878–3901, 2020.
  • 19. B. Zhang, X.H. Wang, L. Elmaimouni, J.G. Yu, X.M. Zhang, Axial guided wave characteristics in functionally graded one-dimensional hexagonal piezoelectric quasicrystal cylinders, Mathematics and Mechanics of Solids, 27, 1, 125–143, 2021.
  • 20. B. Zhang, J.G. Yu, X.M. Zhang, P.M. Ming, Complex guided waves in functionally graded piezoelectric cylindrical structures with sectorial cross-section, Applied Mathematical Modelling, 63, 288–302, 2018.
  • 21. H. Ezzin, M. Mkaoir, M. Arefi, Z. Qian, R. Das, Analysis of guided wave propagation in functionally graded magneto electro elastic composite, Waves in Random and Complex Media, 1–19, 2021.
  • 22. Y. Heydarpour, P. Malekzadeh, R. Dimitri, F. Tornabene, Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers, Applied Sciences (Basel), 10, 4, 1397, 2020.
  • 23. P.K. Saroj, S.A. Sahu, S. Chaudhary, A. Chattopadhyay, Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate, Waves in Random and Complex Media, 25, 4, 608–627, 2015.
  • 24. P. Li, F. Jin, X.S. Cao, Investigation of trapped thickness-twist waves induced by functionally graded piezoelectric material in an inhomogeneous plate, Smart Materials & Structures, 22, 9, 095021, 2013.
  • 25. V. Sharma, S. Kumar, Analysis of size dependency on Love-type wave propagation in a functionally graded piezoelectric smart material, Mathematics and Mechanics of Solids, 25, 8, 1517–1533, 2020.
  • 26. C.X. Xue, E. Pan, On the longitudinal wave along a functionally graded magneto-electroelastic rod, International Journal of Engineering Science, 62, 48–55, 2013.
  • 27. M. Mohammadi, M. Bamdad, K.A. Lambeigi, R. Dimtri, F. Tornabene, Electroelastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets, Composite Structures, 225, 111–119, 2019.
  • 28. J.G. Yu, B. Wu, G.Q. Chen, Wave characteristics in functionally graded piezoelectric hollow cylinders, Archive of Applied Mechanics, 9, 807–824, 2009.
  • 29. X.H. Wang, F.L. Li, X.M. Zhang. J. Yu, H. Qiao, Thermoelastic guided wave in fractional order functionally graded plates: An analytical integration Legendre polynomial approach, Composite Structures, 256, 7, 112997, 2021.
  • 30. J.N. Sharma, M. Pal, Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate, Journal of Sound & Vibration, 270, 4-5, 587–610, 2004.
  • 31. C.C. Liu, J.G. Yu, W.J. Xu, Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory, Meccanica, 55, 5, 11531167, 2020.
  • 32. C. Othmani, H. Zhang, C.F. Lü. Y.Q. Wang, A.R. Kamali, Orthogonal polynomial methods for modeling elastodynamicwavepropagation inelastic, piezoelectric and magnetoelectro-elastic composites – a review, Composite Structures, 286, 115245, 2022.
  • 33. M.F. Zheng, H.W. Ma, Y. Lyu, C. Lu, C. He, Derivation of circumferential guided waves equations for a multilayered laminate composite hollow cylinder by state-vector and Legendre polynomial hybrid formalism, Composite Structures, 255, 112950, 2020.
  • 34. J.E. Lefebvre, J.G. Yu, F.E. Ratolojanahary, Mapped orthogonal functions method applied to acoustic waves-based devices, AIP Advances, 6, 6, 065307, 2016.
  • 35. X.S. Cao, J. Feng, I. Jeon, Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique, NDT & E International, 44, 1, 84–92, 2011.
  • 36. M.B. Amor, I.B. Salah, M. Ghozlen, Propagation behavior of Lamb waves in functionally graded piezoelectric plates, Acta Acustica United with Acustica, 101, 3, 435–442, 2015.
  • 37. H. Al-Qahtani, S. Datta, Thermoelastic waves in an anisotropic infinite plate, Journal of Applied Physics, 96, 7, 3645–3658, 2004.
  • 38. S. Guha, A.K. Singh, Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces, European Journal of Mechanics – A/Solids, 88, 104242, 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a787a177-cda1-45f1-8ff3-375278b5475a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.