PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing of fred bricks derived from wastes: utilization of water treatment sludge and concrete demolition waste

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The treatment of wastewater certainly contributes to reduce water pollution on environment, but it also generates large amounts of water treatment sludge (WTS) which must be further treated to reduce potential health risks and environmental impacts. However, from a circular economy approach, WTS should be considered as a byproduct which can replace natural raw materials for construction industry. Moreover, this sector is urged to reduce its CO2 footprint which is mainly produced by the embodied impact of construction materials during the initial and final phase, in a life cycle assessment perspective. For these reasons, this paper assesses WTS for replacing natural clay in brick industry and it also evaluates the impact of adding concrete waste (CW) to the blend for improving technological properties of the so-made bricks. Thus, bricks containing sludge and CW (i.e. from 0 to 20%) have been successfully manufactured by firing at 1000°C and tested. It was observed that water absorption and apparent porosity values increase while bulk density, compressive strength and thermal conductivity values decrease by depending on the increment in CW content. The bulk density of the fired bricks having 5-20 wt% CW content ranged from 1.72 to 2.10 g/cm3 , compressive strength ranged from 8.9 to 20.2 MPa, water absorption from 7.9 to 17.5% and thermal conductivity from 0.889 to 0.659 W/m K. Because of these reasons, it is concluded that this novel brick made by WTS and CW can be properly manufactured at industrial scale, shows good performance and reduces environmental issues of both brick industry and water treatment plants.
Rocznik
Strony
art. no. e78, 1--16
Opis fizyczny
Bibliogr. 51 poz., il., rys., tab.
Twórcy
autor
  • Civil Engineering Department, Faculty of Engineering, Bartin University, Bartin, Turkey
  • Institute of Building Materials, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Environmental Engineering Department, Faculty of Engineering, Bartin University, Turkey
  • Institute of Building Materials, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Materials Science and Engineering Department, Izmir Kâtip Celebi University, Izmir, Turkey
autor
  • Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, Chile
  • Universidad Internacional de La Rioja, Logroño, La Rioja, Spain
Bibliografia
  • 1. Babatunde AO, Zhao YQ. Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses. Crit Rev Environ Sci Technol. 2007;37(2):129-164. https://doi.org/10.1080/10643380600776239.
  • 2. Luo H, Liu X, Anderson BC, Zhang K, Li X, Huang B, Li M, Mo Y, Fan L, Shen Q, Chen F, Jiang M. Carbon sequestration potential of green roofs using mixed-sewage-sludge substrate in Chengdu World Modern Garden City. Ecol Ind. 2015;49:247-259. https://doi.org/10.1016/j.ecolind.2014.10.016.
  • 3. Okuda T, Nishijima W, Sugimoto M, Saka N, Nakai S, Tanabe K, Ito J, Takenak K, Okada M. Removal of coagulant aluminum from water treatment residuals by acid. Water Res. 2014;60:75-81. https://doi.org/10.1016/j.watres.2014.04.041.
  • 4. Frías M, Vigil de la Villa R, de Soto I, García R, Baloa TA. Influence of activated drinking-water treatment waste on binary cement-based composite behavior: characterization and properties. Compos Part B. 2014;60:14-20.
  • 5. Huang C, Pan JR, Sun KD, Liaw CT. Reuse of water treatment plant sludge and dam sediment in brick-making. Water Sci Technol. 2001;44(10):273-277. https://doi.org/10.2166/wst. 2001.0639.
  • 6. Hegazy B, Fouad HA, Hassanain AM. Brick manufacturing from water treatment sludge and rice husk ash. Aust J Basic Appl Sci. 2012;6(3):453-461.
  • 7. Cremades LV, Cusidó JA, Arteaga F. Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. J Clean Prod. 2018;201:1071-80. https://doi.org/10. 1016/j.jclepro.2018.08.094.
  • 8. Teixeira S, Santos G, Souza A, Alessio P, Souza S, Souza N. The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl Clay Sci. 2011;53(4):561-565. https://doi.org/10.1016/j.clay.2011.05.004.
  • 9. Wang L, Shao Y, Zhao Z, Chen S, Shao X. Optimized utilization studies of dredging sediment for making water treatment ceramic site based on an extreme vertex design. J Water Process Eng. 2020;38: 101603. https://doi.org/10.1016/j.jwpe.2020.101603.
  • 10. Bao T, Chen T, Liu H, Chen D, Qing C, Frost RL. Preparation of magnetic porous ceramsite and its application in biological aerated filters. J Water Process Eng. 2014;4:185-195. https://doi.org/ 10.1016/j.jwpe.2014.10.004.
  • 11. Monteiro SN, Vieira CMF. On the production of fired clay bricks from waste materials: a critical update. Constr Build Mater. 2014;68:599-610. https://doi.org/10.1016/j.conbuildmat.2014. 07.006.
  • 12. Dondi M, Cappelletti P, D’Amore M, de Gennaro R, Graziano SF, Langella A, Raimondo M, Zanelli C. Lightweight aggregates from waste materials: reappraisal of expansion behavior and prediction schemes for bloating. Constr Build Mater. 2016;127:394-409. https://doi.org/10.1016/j.conbuildmat.2016.09.111.
  • 13. Weng C-H, Lin D-F, Chiang P-C. Utilization of sludge as brick materials. Adv Environ Res. 2003;7(3):679-685. https://doi.org/ 10.1016/S1093-0191(02)00037-0.
  • 14. Kizinievič O, Žurauskienė R, Kizinievič V, Žurauskas R. Utilisation of sludge waste from water treatment for ceramic products. Constr Build Mater. 2013;41:464-473. https://doi.org/10.1016/j. conbuildmat.2012.12.041.
  • 15. Heniegal AM, Ramadan MA, Naguib A, Agwa IS. Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud Constr Mater. 2020;13: e00397. https://doi.org/10.1016/j.cscm.2020.e00397.
  • 16. Martínez-García C, Eliche-Quesada D, Pérez-Villarejo L, Iglesias Godino FJ, Corpas-Iglesias FA. Sludge valorization from waste-water treatment plant to its application on the ceramic industry. J Environ Manage. 2012;95:S343-8. https://doi.org/10.1016/j. jenvman.2011.06.016.
  • 17. Mañosa J, Formosa J, Giro-Paloma J, Maldonado-Alameda A, Quina MJ, Chimenos MJ. Valorisation of water treatment sludge for lightweight aggregate production. Constr Build Mater. 2021;269: 121335. https://doi.org/10.1016/j.conbuildmat.2020.121335.
  • 18. Benlalla A, Elmoussaouiti M, Dahhou M, Assaf M. Utilization of water treatment plant sludge in structural ceramics bricks. Appl Clay Sci. 2015;118:171-177. https://doi.org/10.1016/j.clay.2015.09. 012.
  • 19. Chiang KY, Chou PH, Hua CR, Chien KL, Cheeseman C. Light weight bricks manufactured from water treatment sludge and rice husks. J Hazard Mater. 2009;171(1-3):76-82. https://doi.org/10. 1016/j.jhazmat.2009.05.144.
  • 20. Ewais EMM, Elsaadany R, Ahmed A, Shalaby N, Al-Anadouli B. Insulating refractory bricks from water treatment sludge and rice husk ash. Refract Ind Ceram. 2017;58(2):136-144.
  • 21. Wolff E, Schwabe WK, Conceição SV. Utilization of water treatment plant sludge in structural ceramics. J Clean Product. 2015;96:282-289. https://doi.org/10.1016/j.jclepro.2014.06.018.
  • 22. Tang Q, Ma Z, Wu H, Wang W. The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: a critical review. Cement Concr Compos. 2020;114: 103807. https:// doi.org/10.1016/j.cemconcomp.2020.103807.
  • 23. Kim YJ, Choi YW. Utilization of waste concrete powder as a substitution material for cement. Constr Build Mater. 2012;30:500-4. https://doi.org/10.1016/j.conbuildmat.2011.11.042.
  • 24. Evangelista L, de Brito J. Durability of crushed fne recycled aggregate concrete assessed by permeability-related properties. Mag Concr Res. 2019;71(21):1142-50. https://doi.org/10.1680/ jmacr.18.00093.
  • 25. Guo H, Shi C, Guan X, Zhu J, Ding Y, Ling TC, Zhang H, Wang Y. Durability of recycled aggregate concrete - a review. Cement Concr Compos. 2018;89:251-9. https://doi.org/10.1016/j.cemco ncomp.2018.03.008.
  • 26. Lu JX, Yan X, He P, Poon CS. Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. J Clean Prod. 2019;234:1102-1112. https://doi.org/10.1016/j.jclepro.2019. 06.260.
  • 27. Pedro D, de Brito J, Evangelista L. Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: mechanical, durability and long-term properties. Construct Build Mater. 2017;154:294-309. https://doi.org/10.1016/j.conbuildmat.2017.07.215.
  • 28. Fonseca N, de Brito J, Evangelista L. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement Concr Compos. 2011;33(6):637-643. https://doi.org/10.1016/j.cemconcomp.2011.04.002.
  • 29. Gencel O, Erdogmus E, Sutcu M, Oren OH. Effects of concrete waste on characteristics of structural fried clay bricks. Constr Build Mater. 2020;255: 119362. https://doi.org/10.1016/j.conbu ildmat.2020.119362.
  • 30. Faria KCP, Gurgel RF, Holanda JHF. Recycling of sugarcane bagasse ash waste in the production of clay bricks. J Environ Manage. 2012;101:7-12. https://doi.org/10.1016/j.jenvman.2012.01. 032.
  • 31. Sutcu M, Akkurt S. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram Int. 2009;35(7):2625-31. https://doi.org/10.1016/j.ceramint.2009. 02.027.
  • 32. Lin DF, Luo HF, Sheen YN. Glazed tiles manufactured from incinerated sewage sludge ash and clay. J Air Waste Manage. 2005;55:163-172. https://doi.org/10.1080/10473289.2005.10464 614.
  • 33. Erdogmus E, Harja M, Gencel O, Sutcu M, Yaras A. New construction materials synthesized from water treatment sludge and fired clay brick wastes. J Build Eng. 2021;42: 102471. https://doi. org/10.1016/j.jobe.2021.102471.
  • 34. Munoz Velasco P, Moralis Ortiz MP, Mendivil Giro MA, Munoz Velasco L. Fired clay bricks manufactured by adding wastes as sustainable construction material - a review. Constr Build Mater. 2014;63:97-107. https://doi.org/10.1016/j.conbuildmat.2014.03. 045.
  • 35. Mustaf S, Ahsan M, Dewan AH, Ahmed S, Khatun N, Absar N. Effect of waste glass powder on physic-mechanical properties of ceramic tile. J Sci Res. 2011;24(2):169-180.
  • 36. Ul Rehman M, Ahmad M, Rashid K. Influence of fluxing oxides from waste on the production and physico-mechanical properties of fired clay brick: a review. J Build Eng. 2020;27: 100965. https://doi.org/10.1016/j.jobe.2019.100965.
  • 37. Ukwatta A, Mohajerani A. Characterisation of fred-clay bricks incorporating biosolids and the effect of heating rate on properties of bricks. Constr Build Mater. 2017;142:11-22. https://doi.org/10. 1016/j.conbuildmat.2017.03.047.
  • 38. Klemens PG. Phonon scattering by oxygen vacancies in ceramics. Physica B. 1999;263-264:102-104. https://doi.org/10.1016/S0921-4526(98)01202-2.
  • 39. Nakagawa J, Kage Y, Hori T, Shiomi J, Nomura M. Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures. Appl Phys Lett. 2015;107(2): 023104. https://doi.org/10.1063/1.4926653.
  • 40. Netinger I, Vracevic M, Ranogajec J, Vucetic S. Evaluation of brick resistance to freeze thaw cycles according to indirect procedures. Gradevinar. 2014;66(3):197-209.
  • 41. Ukwatta A, Mohajerani A, Eshtiaghi N, Setunge S. Variation in physical and mechanical properties of fred-clay bricks incorporating ETP biosolids. J Clean Prod. 2016;119:76-85. https://doi.org/10.1016/j.jclepro.2016.01.094.
  • 42. Sveda M. Frost resistance of brick knowledge about the relation ship between pore structure and frost resistance is the first step to the production of high frost-resistance brick products. Am Ceram Soc Bull. 2001;80:46-48.
  • 43. Kim HS, Kim JM, Ikeda K. Effect of pores on flexural strength of roofing tiles at low temperature. Br Ceram Trans. 2003;102:133-137. https://doi.org/10.1179/096797803225001623/.
  • 44. Ikeda K, Kim HS, Kaizu K, Higashi A. Influence of firing temperature on frost resistance of roofing tiles. J Eur Ceram Soc. 2004;24(14):3671-7. https://doi.org/10.1016/j.jeurceramsoc.2003.12.014.
  • 45. Peters T, Iberg R. Mineralogical changes during firing of calcium rich brick clays. Ceram Bull. 1978;7:503-509.
  • 46. Traoré K, Kabré TS, Blanchart P. Low temperature sintering of a pottery clay from Burkina Faso. Appl Clay Sci. 2000;17:279-292. https://doi.org/10.1016/S0169-1317(00)00020-X.
  • 47. Trindade MJ, Dias MI, Coroado J, Rocha F. Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl Clay Sci. 2009;42(3-4):345-355. https://doi.org/10.1016/j.clay.2008.02.008.
  • 48. Liu Y, Zhuge Y, Chow CWK, Keegan A, Li D, Pham PN, Huang J, Siddique R. Utilization of drinking water treatment sludge in concrete paving blocks: microstructural analysis, durability and leaching properties. J Environ Manage. 2020;262: 110352. https://doi.org/10.1016/j.jenvman.2020.110352.
  • 49. Limbachiya MC, Marrocchino E, Koulourisa A. Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Manage. 2007;27(2):201-208. https://doi.org/10.1016/j.wasman.2006.01.005.
  • 50. Masrur Mahedi M, Cetin B. Carbonation based leaching assessment of recycled concrete aggregates. Chemosphere. 2020;250: 126307. https://doi.org/10.1016/j.chemosphere.2020.126307.
  • 51. Coleman NJ, Lee WE, Slipper IJ. Interactions of aqueous Cu2 +, Zn2 + and Pb2+ ions with crushed concrete fines. J Hazard Mater. 2005;121(1-3):203-213. https://doi.org/10.1016/j.jhazmat.2005. 02.009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a7863a7b-1145-47c6-940d-946da228ff7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.