PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined experimental–numerical mode I fracture characterization of the pultruded composite bars

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, pultruded GFRP bars are investigated to determine their fracture properties. The double cantilever beam test (DCB) is used to assess fracture behavior under mode I loading conditions. However, due to the presence of the R-curve effect (variable fracture energy dependent on the length of the crack), it is necessary to introduce a nonstandard approach to determine fracture properties. The mixed experimental–numerical approach is proposed to deal with this issue. Numerical simulations were carried out in Simulia Abaqus, and with Python scripting it was possible to generate models and obtain R-curve for the material. The numerical model built based on the experimental results has very good agreement with it (force–displacement and delamination length–time characteristics) which allows the use of the mentioned model in the analysis of more complex structures. Acoustic emission analysis was introduced as an auxiliary technique. The delamination obtained from both the numerical model and the experiment complies with the registered acoustic emission events. The proposed method can be used in preparing a material model for other composite materials, which display the presence of the R-curve effect.
Rocznik
Strony
art. no. e146, 2023
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Structural Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
Bibliografia
  • 1. Nanni ADL. Reinforced concrete with FRP Bars: mechanics and design. CRC Press, 2019. Accessed: 22 Sep 2022. [Online]. Avail- able: https://www.routledge.com/Reinforced-Concrete-with-FRP- Bars-Mechanics-and-Design/Nanni-Luca-Zadeh/p/book/97803 67864996.
  • 2. Stabla P, Lubecki M, Smolnicki M. The effect of mosaic pattern and winding angle on radially compressed filament-wound CFRP composite tubes. Compos Struct. 2022;292:115644. https://doi. org/10.1016/J.COMPSTRUCT.2022.115644.
  • 3. Stabla P, Smolnicki M, Błażejewski W. The numerical approach to mosaic patterns in filament-wound composite pipes. Appl Compos Mater. 2021;28(1):181–99. https:// doi. org/ 10. 1007/ s10443-020-09861-z.
  • 4. Azeem M, et al. Application of filament winding technology in composite pressure vessels and challenges: a review. J Energy Storage. 2022;49:103468. https:// doi. org/ 10. 1016/j. est. 2021. 103468.
  • 5. Duda S, Lesiuk G, Zielonka P, Stabla P. Flexural pseudo-ductility effect in hybrid GFRP/CFRP Bars 2021.
  • 6. Tan T, et al. Investigating fracture behavior of polymer and poly- meric composite materials using spiral notch torsion test. Eng Fract Mech. 2013;101:109–28. https://doi.org/10.1016/J.ENGFR ACMECH.2012.07.007.
  • 7. Burda I, Brunner AJ, Barbezat M. Mode I fracture testing of pul- truded glass fiber reinforced epoxy rods: Test development and influence of precracking method and manufacturing. Eng Fract Mech. 2015;149:287–97. https://doi.org/10.1016/j.engfracmech. 2015.08.009.
  • 8. ASTM D5528-01. Standard test method for mode I interlami- nar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. American Standard of Testing Methods, 2014.
  • 9. Tobata Y, Naito K, Tanks J. Investigation of a critical separation criterion for mode I-Governed fracture of basalt fiber/polypro- pylene rods via a modified double cantilever beam test. Com- pos Struct. 2022;279:114778. https://doi.org/10.1016/J.COMPS TRUCT.2021.114778.
  • 10. Jiang Z, Wan S, Zhong Z, Li M, Shen K. Determination of mode-I fracture toughness and non-uniformity for GFRP dou- ble cantilever beam specimens with an adhesive layer. Eng Fract Mech. 2014;128(C):139–56. https://doi.org/10.1016/J.ENGFR ACMECH.2014.07.011.
  • 11. Lindgaard E, Bak BLV. Experimental characterization of delami- nation in off-axis GFRP laminates during mode I loading. Com- pos Struct. 2019;220:953–60. https://doi.org/10.1016/J.COMPS TRUCT.2019.04.022.
  • 12. Bashar MT, Sundararaj U, Mertiny P. Mode-I interlaminar fracture behaviour of nanoparticle modified epoxy/basalt fibre-reinforced laminates. Polym Test. 2013;32(2):402–12. https:// doi. org/ 10. 1016/J.POLYMERTESTING.2012.10.012.
  • 13. Joshi SC, Dikshit V. Enhancing interlaminar fracture characteris- tics of woven CFRP prepreg composites through CNT dispersion. J Composite Mater. 2011;46(6):665–75. https://doi.org/10.1177/ 0021998311410472.
  • 14. Borowski E, Soliman E, Kandil UF, Taha MR. Interlaminar frac- ture toughness of CFRP laminates incorporating multi-walled carbon nanotubes. Polymers. 2015;7(6):1020–45. https://doi.org/ 10.3390/POLYM7061020.
  • 15. Ponnusami SA, Cui H, Erice B, Lißner M, Pathan M, Petrinic N. An integrated inverse numerical–experimental approach to deter- mine the dynamic Mode-I interlaminar fracture toughness of fibre composites. Compos Struct. 2022;293:115734. https://doi.org/10. 1016/J.COMPSTRUCT.2022.115734.
  • 16. Burda I, Barbezat M, Brunner AJ. Delamination resistance of GFRP-epoxy rods with nanoparticle- and microparticle-modified matrix and its correlation with the fracture properties of epoxy nanocomposites. Fatigue Fract Eng Mater Struct. 2020;43(2):292– 307. https://doi.org/10.1111/FFE.13122.
  • 17. Rzeczkowski J, Samborski S, de Moura M. Experimental investigation of delamination in composite continuous fiber- reinforced plastic laminates with elastic couplings. Materials. 2020;13(22):5146. https://doi.org/10.3390/MA13225146.
  • 18. Duda Sz, Smolnicki M, Osiecki T, Lesiuk G. Determination of fracture energy (mode I) in the inverse fiber metal laminates using experimental–numerical approach. Int J Fract. 2021;2021:1–10. https://doi.org/10.1007/S10704-021-00566-3.
  • 19. Smolnicki M, Duda Sz, Stabla P, Osiecki T. Mechanical inves- tigation on interlaminar behaviour of inverse FML using acoustic emission and finite element method. Compos Struct. 2022;294:115810. https:// doi. org/ 10. 1016/J. COMPSTRUCT. 2022.115810.
  • 20. Steinbrech RW. R-curve behavior of ceramics. In: Bradt RC, Has- selman DPH, Munz D, Sakai M, Shevchenko VY, editors. Fracture mechanics of ceramics, vol. 9. Boston: Springer; 1992. https://doi. org/10.1007/978-1-4615-3350-4_14.
  • 21. Tomaszewski H, Boniecki M, Weglarz H. Effect of grain size on R-curve behaviour of alumina ceramics. J Eur Ceram Soc. 2000;20(14–15):2569–74. https:// doi. org/ 10. 1016/ S0955- 2219(00)00137-0.
  • 22. Fischer H, Rentzsch W, Marx R. R-curve behavior of dental ceramic materials. J Dent Res. 2002;81(8):547–51. https://doi. org/10.1177/154405910208100809.
  • 23. Latifi M, Kouchakzadeh MA. Modeling the R-curve effects in laminate composites using the interface thick level set method. Theoret Appl Fract Mech. 2020;108:102645. https://doi.org/10. 1016/j.tafmec.2020.102645.
  • 24. Azadi M, Saeedi M, Mokhtarishirazabad M, Lopez-Crespo P. Effects of loading rate on crack growth behavior in carbon fiber reinforced polymer composites using digital image correlation technique. Compos B Eng. 2019;175:107161. https://doi.org/10. 1016/j.compositesb.2019.107161.
  • 25. Gong+ X-J, Gong X.-L, Aivazzadeh S, Benzeggagh M. R-curves characterization of glass/epoxy composite. In: Proceedings of ICCM-10, Whistler, B.C. Canada. 1995. https://iccm-central.org/ Proceedings/ICCM10proceedings/papers/ICCM10_V1_12.pdf.
  • 26. Catalanotti G, Xavier J, Camanho PP. Measurement of the com- pressive crack resistance curve of composites using the size effect law. Compos Part A Appl Sci Manuf. 2014;56:300–7. https://doi. org/10.1016/j.compositesa.2013.10.017.
  • 27. Alfano M, Furgiuele F, Leonardi A, Maletta C, Paulino GH. Cohe- sive zone modeling of Mode I fracture in adhesive bonded joints. Key Eng Mater. 2007;348–349:13–6. https:// doi. org/ 10. 4028/ www.scientific.net/KEM.348-349.13.
  • 28. Bartan B, Acar B, Kayran A. Three-dimensional delamination analysis in composite open hole tensile specimens with cohesive zone method. In 57th AIAA/ASCE/AHS/ASC Structures, Struc- tural Dynamics, and Materials Conference, 2016. https://doi.org/ 10.2514/6.2016-0980.
  • 29. de Cicco DD, Taheri F. Delamination buckling and crack propaga- tion simulations in fiber-metal laminates using xFEM and cohe- sive elements. Appl Sci. 2018;8(12):2440. https://doi.org/10.3390/ APP8122440.
  • 30. Smolnicki M, Lesiuk G, Duda S, de Jesus AMP. A review on finite-element simulation of fibre metal laminates. Archiv Comput Methods Eng. 2022;1:1–15. https://doi.org/10.1007/S11831-022- 09814-8/FIGURES/5.
  • 31. Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8(2):100–4. https://doi.org/10.1016/0022-5096(60) 90013-2.
  • 32. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech. 1962. https://doi.org/10.1016/ S0065-2156(08)70121-2.
  • 33. Chang P, Yang J. Modeling of fatigue crack growth in notched fiber metal laminates. Int J Fatigue. 2008;30(12):2165–74. https:// doi.org/10.1016/j.ijfatigue.2008.05.023.
  • 34. Asghar W, et al. Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue Fract Eng Mater Struct. 2017;40(7):1086–100. https://doi.org/10.1111/ffe.12566.
  • 35. Megeri S, Naik GN. Numerical studies of the low velocity impact behaviour on hybrid fiber metal laminates. Mater Today. 2021;44:1860–4. https://doi.org/10.1016/j.matpr.2020.12.030.
  • 36. Huang T, Huang Y, Lin Y, Yin X. Experimental and numerical simulation studies of failure behaviour of carbon fibre reinforced aluminium laminates under transverse local quasi-static loading. Simul Algorithm J Phys. 2020;1624:22042. https://doi.org/10. 1088/1742-6596/1624/2/022042.
  • 37. Sosa JL, Karapurath N. Delamination modelling of GLARE using the extended finite element method. Compos Sci Technol. 2012. https://doi.org/10.1016/j.compscitech.2012.02.005.
  • 38. Barsoum I, Almansoori H, Almazrouei AA, Gunister E. Fracture mechanics testing and crack propagation modelling in polypro- pylene pipes. Int J Struct Integrity. 2020. https://doi.org/10.1108/ IJSI-01-2020-0006.
  • 39. Gutkin R, Laffan ML, Pinho ST, Robinson P, Curtis PT. Model- ling the R-curve effect and its specimen-dependence. Int J Solids Struct. 2011;48(11–12):1767–77. https://doi.org/10.1016/J.IJSOL STR.2011.02.025.
  • 40. Dávila CG, Rose CA, Camanho PP. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract. 2009;158(2):211–23. https://doi.org/10.1007/S10704-009-9366-Z.
  • 41. Tamuzs V, Tarasovs S, Vilks U. Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens. Eng Fract Mech. 2001;68(5):513–25. https://doi.org/ 10.1016/S0013-7944(00)00131-4.
  • 42. Heidari-Rarani M, Shokrieh MM, Camanho PP. Finite element modeling of mode I delamination growth in laminated DCB speci- mens with R-curve effects. Compos B Eng. 2013;45(1):897–903. https://doi.org/10.1016/J.COMPOSITESB.2012.09.051.
  • 43. Li L, Liu W, Wang Y, Zhao Z. Mechanical performance and damage monitoring of CFRP thermoplastic laminates with an open hole repaired by 3D printed patches. Compos Struct. 2023;303:116308. https:// doi. org/ 10. 1016/J. COMPSTRUCT. 2022.116308.
  • 44. Sadighi M, Pärnänen T, Alderliesten RC, Sayeaftabi M, Benedic- tus R. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates. Appl Compos Mater. 2012;19(3–4):545–59. https://doi.org/10. 1007/s10443-011-9235-6.
  • 45. Soltani P, Keikhosravy M, Oskouei RH, Soutis C. Studying the tensile behaviour of GLARE laminates: a finite element modelling approach. Appl Compos Mater. 2011;18(4):271–82. https://doi. org/10.1007/s10443-010-9155-x.
  • 46. Khoramishad H, Hamzenejad M, Ashofteh RS. Characterizing cohesive zone model using a mixed-mode direct method. Eng Fract Mech. 2016;153:175–89. https://doi. org/ 10. 1016/j. engfr acmech.2015.10.045.
  • 47. Tsokanas P, Loutas T. Hygrothermal effect on the strain energy release rates and mode mixity of asymmetric delaminations in generally layered beams. Eng Fract Mech. 2019;214:390–409. https://doi.org/10.1016/j.engfracmech.2019.03.006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a784b135-9a2b-4e59-9978-926d0a0ff9d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.