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1. Introduction

The goal of this paper is to estimate the health states of turbo-
fan engines and predict the RUL of them. Turbofan engine health re-
lated parameters represent engine component efficiencies and flow 
capacities [4, 24]. The engine health conditions deteriorate over time 
until end of life which can be subjectively determined as a function 
of operational thresholds that can be measured. These thresholds de-
pend on user specifications to determine safe operational limits [24]. 
The RUL estimates are in units of time (cycles for engines).Reliably 
estimating RUL can promisingly save engine operational costs and 
improve safety level. Wear or deterioration of the five rotating compo-
nents (fan, low pressure compressor (LPC), high pressure compressor 
(HPC), High pressure turbo (HPT) and low pressure turbo (LPT)) can 

be monitored by various sensors. The sensory data collected during 
flight is utilized to estimate the health trending of the engine and its 
components. In practice very few faults are allowed to go all the way 
to a failure especially for aero engines. The turbofan engines degra-
dation simulations can be carried out using the commercial modular 
aero-propulsion system simulation (CMAPSS) test-bed developed by 
NASA for noisy sensor measurements. Fig.1 was a simplified diagram 
of the simulated engine. It is a good choice to adopt the simulated RtF 
data to validate the prognostic methods.

In data-driven prognostic context, the first step is to draw the 
health index from the multivariate sensory data. Health indices can 
be divided into two types: 1) physics health index (PHI); 2) synthesis 
health index (SHI) [12]. The sensory data which directly reflect the 
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Silniki turbowentylatorowe niepoddane konserwacji ulegają stopniowej degradacji aż do czasu wystąpienia uszkodzenia lub za-
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ter of Excellence (PCoE) przy NASA Ames Research Center oraz przedstawiono odpowiednie porównania.
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damage process or health degradation is served 
as PHI. Nevertheless, in most situations sys-
tem or subsystem health is related with various 
parameters measured by a mount of sensors. 
Therefore, we need an effective approach to 
generate health indices from multivariate data. 
Wang T. et al. [30] employed a linear regres-
sion model to transform multi-dimensional 
sensory signals to one-dimensional SHI. Lo-
gistic regression was employed to transfer the 
multivariate data to health indices by reference 
[32]. The shortcomings of the above models are 
that they rely on the whole degradation space 
and sometimes will be over-fitting. Most of the 
time it is hard to acquire a data set that is repre-
sentative of the whole degradation space [21]. 
Alternatively health state can be decided based on the quantization 
error away from the normal/failure feature space. Huang R.Q et al. 
[15] developed a new bearing degradation indicator from three time 
features and three frequency features based on self-organizing map-
ping (SOM) method and minimum quantization error away from nor-
mal feature space. Inspired by existing research, this paper proposes 
an approach for turbofan engine health indices generation based on 
clustering of multivariate sensory data and distance-based similarity 
analysis with a target cluster.

From the first time the engines come into use to the final failure, 
besides the good and failure states, there as well exist intermediate 
states. As the system operational modes and failure modes are very 
complicated. It is a practical problem to define the number of the 
states during the clustering stage. For instance, reference [16] em-
ployed fuzzy clustering method to discriminate four health states for 
the specified application, e.g. good, mild wear, critical and failure. 
The ground truth or prior knowledge along with the input data should 
be taken into account to confirm the state number. 

Clustering analysis is a class of discovery process that divides data 
into subsets. Each subset represents a cluster, where the intra-cluster 
similarity is maximized and the inter-cluster similarity is minimized 
[12].Clustering is conventionally an unsupervised machine learning 
algorithm. Xiao W.C [31] et al. proposed a novel clustering ensemble 
models including semi-supervised method and discussed its applica-
tion in fault diagnosis of high speed train (HST) running gear. Many 
literatures applied clustering methods for fault diagnosis, but few for 
health indices generation. 

Cluster stamped by the failure state is served as the baseline. Thus 
the topological distances between the feature vectors of the sensory 
data with the baseline are calculated. The distances form a one-di-

mensional time series defined as the SHI in this paper. In prognostics 
context, it is generally desirable to have early RUL estimates rather 
than late RULs, since the main aspect is to avoid failures. For engines 
degradation scenario, an early RUL estimate is preferred over late 
RUL. Therefore, we consider it is more appropriate to take the failure 
cluster, rather than the failure point, as the baseline. Although it may 
sacrifice the prediction accuracy, it is safe in realistic applications.

With the health indices available, the engine health degradation is 
then modeled so as to predict the RUL. Machine learning approaches 
are commonly used such as linear regression [30], neural network [10, 
15, 33], stochastic process regression [18], Bayesian learning meth-
ods [22] and etc. Goebel K et al. [10] compared three data-driven 
algorithms for RUL prediction, namely RVM [26], Gaussian proc-
ess regression (GPR) [14], and neural network. Results of reference 
[10] show that the RUL estimation errors of RVM are the minimum. 
In [33], a novel method is developed using unscented Kalman filter 
(UKF) with relevance vector regression (RVR) and applied to RUL 
and short-term capacity prediction of batteries. Once the RtF models 
are constructed, the RUL of a testing unit can be predicted by analys-
ing the similarity between the health indices of the testing unit with 
the models. After the optimal matching model and the most similar 
segment of the model are found, the RUL can be confirmed. 

Prognostics are meaningless unless the uncertainties in the predic-
tions are account for. Uncertainties arise from various sources, includ-
ing modeling uncertainties, sensory data uncertainties, future profile 
uncertainties and etc. [23]. Since the software CMAPSS can ideally 
simulate the RtF processes for many engines under the same opera-
tional settings with different initial states. An ensemble of degradation 
models can be obtained. Therefore, for a testing engine, we will get 
the samples of RULs based on the degradation models, then the sam-
ples can be used to output the RUL interval estimations. 

Fig. 2 illustrates the framework of the proposed method. This 
paper is organized as follows. Section 2 focuses on synthesizing the 
health indices from multivariate feature vectors based on the hierar-
chical clustering method. Section 3 elaborates RUL estimation pro-
cedure based on SHI. Section 4 demonstrated the proposition by the 
NASA CMAPSS datasets and compares the results with different 
methods and different feature vector data. Finally, section 5 concludes 
this paper and indicates future work.

2. Health indices synthetization

2.1.	 Preprocessing of the RtF data

Before clustering, three preprocessing measures are taken.
(1) Parameter selection
Firstly, parameters of interest were selected to construct the fea-

ture vectors related with the health degradation. One vector consists 
of the parameters at a time instant, which can be treated as a point in 

Fig. 1. Simplified diagram of engine simulated in C-MAPSS

Fig. 2. The framework of the proposed method



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.18, No. 4, 2016 623

Science and Technology

the multidimensional space. It is crucial to choose the appropriate pa-
rameters. The criterion is that the selected parameter must be coupling 
tightly with the health degradation or the concerned failure modes. 
Typically, the health parameters are correction factors on the efficien-
cy and flow capacity of the components (fan, compressors, turbines, 
and nozzle) of the engines, while the measurements are, for instance, 
inter-component pressures, temperatures, and shaft speeds [3]. 

(2) Outlier removal 
In data mining community, there always exist outliers in the raw 

that must be removed using some algorithms [2, 19]. An outlier is 
a data object that deviates significantly from the rest of the objects. 
This paper used K nearest neighbor (KNN) algorithm to remove the 
outliers, as it is the most-frequently used algorithm and computational 
economic. The flow of the KNN algorithm is as follows.

Set the value of a)	 K, and establish a rule for confirming an out-
lier.
Calculate the first point’s distances to the other points to obtain a)	
the K nearest points. The average of the K distances will be 
obtained.
Repeat step b until all vectors are traversed.b)	
Rank the average distance values in descending order. Select c)	
the top points as outliers, or select the points whose average 
distance values exceed the set line. This depends on what type 
of rule is applied.

(3) Normalization

Normalization is executed in the last step of data preprocessing. 
It must be noted that normalization should be taken carefully. It has a 
precondition for normalization that the parameters contribute equiva-
lently to the health degradation expression. Thereby, normalization 
has two advantages in health index synthetization. 1) Each param-
eter is transformed to the value varying in the range of [0, 1], which 
is helpful for expressing the health index. 2) The negative effect 
caused by the different scales of parameters can be eliminated. 

2.2.	 Clustering of the preprocessed data

As an unsupervised machine learning method, clustering can be 
used in health monitoring and state estimation especially when the 
number of states is unknown. The sensory data of system or subsys-
tem is time series data, for which the clustering methods are summa-
rized by Liao [17]. Reference [12] divides the clustering methods into 
four categories, i.e. partitioning methods, hierarchical methods, den-
sity-based methods, and grid-based methods. The agglomerative hier-
archical clustering method based on the Matlab functions is used 
in this paper. The result of agglomerative hierarchical clustering 
is a structured tree graph called a dendrogram. The tree is not a single 
set of clusters, but rather a multilevel hierarchy, where clusters at one 
level are joined as a cluster at the next level [5, 25, 28]. This allows 
us to decide the level or scale of clustering that is most appropriate for 
our application. And HC require no initial settings beforehand. The 
algorithm flow is as follows:

Take each data point as a dependent cluster so that there is only a)	
one member in a cluster;
Calculate the Euclidean distance between every two points, then b)	
each point and its nearest point converge to a cluster. This pro-
cess is called linkage;
Calculate the Euclidean distance between every two clusters, then c)	
each cluster and its nearest cluster converge to a new cluster;
Repeat step c until all points converge to one clusterd)	 ;
A binary cluster tree is created and is trimmed based on some e)	
rules to get the final clusters.
For a given input m n×  matrix X , each row vector of this matrix 

is a data point at a time slice. In step c, for two different vectors ix  and 

jx , their distance can be obtained by the following formula:

	 2 '( )( )st i j i jd x x x x= − −  	 (1)

Here the distance metrics are discussed shortly. There are several 
different distance metrics, for instance, the Euclidean distance, Stand-
ardized Euclidean distance, Mahalanobis distance, and etc, among 
which Euclidean distance is a commonly used. Mahalanobis distance 
takes the scales into account by introducing a covariance matrix in the 
distance measures. As the data was normalized afore, the scales of di-
mensions import no effects on the distance measures. Therefore, Eucli-
dean distance is a reasonable similarity measure in this application.

The combination of two generated clusters is called linkage. 
There are numerous linkage methods, including single linkage, com-
plete linkage, average linkage, centroid linkage, and Ward’s link-
age. This paper adopts Ward’s linkage, which is a type of least mean 
square (LMS) algorithm that is only adapted to Euclidean distance. 
The Ward’s linkage algorithm is as follows. Suppose that there exist 
cluster r and cluster s. Their numbers are rn  and sn , respectively. 
The centroids are rx  and sx . The Ward’s distance between them is 
calculated by the equation:

	 2
2(r,s) r s

r s
r s

n nd x x
n n

= −
+

 	 (2)

where 2  represents the Euclidean distance.

The dendrogram is trimmed according to a certain rule to acquire 
the final clusters. The common rules are “max cluster number”, “in-
consistency coefficient”, etc. The inconsistency coefficient character-
izes each link in a cluster tree by comparing its height with the aver-
age height of other links at the same level of the hierarchy. Clusters 
are formed when a node and all of its subnodes have an inconsistent 
value less than c. In cluster analysis, inconsistent links can indicate 
the border of a natural division in a data set. In the RtF process of 
one failure mode, the states can be divided into four categories, i.e. 
healthy state, subhealthy state, degraded state, and failure state. For 
the failure state cluster, it can be further divided into more clusters ac-
cording to the dendrogram. This can be useful for refining the failure 
state cluster but should be executed carefully according to different 
applications.

2.3.	 Distance-based synthesis health indices

After the preprocessing and clustering of the primitive RtF data, 
clusters are acquired that represent different states, i.e. normal state, 
failure state or intermediate degraded states. The cluster centroid and 
radius are related with the health state and accordingly kept as the so-
called knowledge. Health state estimation is actually a similarity anal-
ysis process for testing or real-time data with the learned clusters. The 
Euclidean distance between the testing data (preprocessed as well) 
point with each cluster centroid is calculated, and the nearest cluster is 
taken as the target cluster for the point. Generally, the distance should 
not exceed the radius. However, there might be some data points that 
fall outside the target cluster. If the learning stage covered the whole 
feature space, the data points are considered as outliers. Otherwise 
further analysis should be carried on in case the points form a new 
cluster or expand an existing cluster. 

The failure state cluster is extracted and served as the baseline to 
generate the health indices. The centroid of the failure state cluster 

Fc  is a 1 n×  vector. Qualitatively, a larger distance value represents 
a better state; otherwise, the health is deteriorative. For the training 

data, suppose there are 1S  units (engines) that run through the degra-
dation process. The preprocessed training data for the ith unit is de-
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noted by Tr  that is a iL n×  matrix. The health indices for the ith unit 
is denoted by ( )i ih l  with 11,2, ,i S=  , and 1,2, ,i il L=  . iL  is the 
length of #i engine life. The Euclidean distances between Tr  and Fc  
are calculated by the following formula:

	 ( ) ( )( )
i ii i l F l Fh l Tr c Tr c ′= − − 	 (3)

So we can obtain a health index time series for each training unit. 
And it is the same for the testing units. The health indices are the 
basis for RUL estimation. The health indices of a training unit always 
contain an uptrend tail, as seen in Fig.3. In order to output a safer esti-
mated RUL based-on model-matching method, the tail should be cut.

3. RUL estimation based on health indices

3.1.	 Algorithms for degradation modeling 

The health indices can be directly used to estimate the RUL. Fur-
thermore, degradation models can be firstly constructed based on the 
health indices. In prognostic application, many degradation modeling 
algorithms are researched, for example, auto-regression and moving 
average [9, 13], exponential regression [30], and RVR. This section 
introduces the theoretical background of RVM.  

The relevance vector machine (RVM) algorithm is a sparse Baye-
sian learning algorithm proposed by Tipping in 2000 [26, 27]. On the 
basis of SVM, Tipping applied the kernel theory to the Bayesian in-
ference of the Gaussian process. The irrelevant points are removed 
to acquire the sparse model by the theory of automatic relevance de-
termination (ARD) under the hierarchical prior parameters [7, 20]. 

Compared with SVM, RVM offers some advantages including non-
“Mercer” kernels, sparsity, fewer hyperparameters and probabilistic 
predictions.

Given a dataset of input–target pairs 1{ , }N
n n nt =x , the aim is to 

learn a model for the dependency of the targets on the inputs to make 
accurate predictions of t  for unseen values of x . The targets are sam-
ples from the model with additive noise:

	 ( , )n n nt y ε= +x w  	 (4)

where y  is used to base the prediction, and nε  are independent sam-
ples from some noise process that is assumed to be mean-zero Gaus-

sian with variance σ2. 

Assuming the independence of nt , the likelihood of 
the complete dataset can be written as:

p N( , ) ( ) exp{ || || ( )}/t w| t - wσ πσ σ2 2 2 2 22 2= −− ΦΦ    (5)

where 1( ... )T
Nt t=t ,  0( )T

Nw w=w   ,	  

and Φ is the ( 1)N N× +  ‘design’ matrix 
with ΦΦ = [ ( ), ( ),... , ( )]φ φ φx x xN

T
1 2  wherein 

φ( ) [ , ( , ), ( , ),..., ( , )]x K x x K x x K x xn n n n N
T= 1 1 2 , w i t h 

( , )n iK x x  being a kernel function.
If directly estimated by the maximum likelihood 

estimation (MLE), this will lead to over-fitting of the 
parameters. To solve this problem, Tipping defines a 
zero-mean Gaussian prior distribution over w:

	 p N wi i
i

N
( ) ( , )w αα = −

=
∏ 0 1

0
 α                  (6)

where αα = { , , , }α α α0 1  N  is a vector of  1N +  hyper-
parameters.

Hyperpriors for α and σ2 are then defined as:

	
p a b

p c d

i
i

N

i

N

( ) Gamma( , )

( ) Gamma( , )

αα =

=

=

=

∏

∏

α

σ β

0

2

0

 	 (7)

Where 1 1Gamma( , ) ( ) iba a
i i ia b b e αα α α −− −= Γ , and 

410a b c d −= = = = . When the hyperparameters approach infinity, 
the probabilistic distribution of the corresponding weights tends to 0. 
The related inputs with nonzero weights are deemed to be “relevant” 
and are the core points characterizing the time series. Next, the hy-
perparameters should be optimized based on the observed data. The 
posteriori distribution of weights w satisfies Gaussian distribution:

p t N
T

( , , ) ( ) exp ( ) ( )( )w w w
αα

µµ µµ
σ π2 1 2 1 2

1
2

2
= −

− −










− + −

−
∑∑

∑∑   (8)

The posteriori variances and means of weights w  are:

Fig. 3. The tail of a training unit health idices
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∑∑ ΦΦ ΦΦ

∑∑ΦΦ

= +( )
=

− −

−

σ

σ

2 1

2

T

Tt

A

µµ
 	 (9)

where A = diag N( , ,... , )α α α0 1 ; the detailed derivation process can 
be found in [5]. The optimal values of α and σ2 should maximize the 
following: 

p p p dw

N T T

( , ) ( , ) ( )

( ) exp

t t w wαα αασ σ

π σ σ

2 2

2 2 1 1 2 22 1
2

=

= + − +

∫
− − −

I A t IΦΦ ΦΦ ΦΦΦΦ ΦΦA t− −( )







1 1T
 (10)

α is estimated by the iterative method:

	 α
γ
µ

i
new i

i
= 2 	 (11)

wherein γ αi i ii= − ∑1 , µi  is the mean value of the ith posteriori 

weight in eq.(15), and ii∑  is the ith diagonal element of the poste-
riori variance matrix ∑ . The variance σ2  is estimated by the same 
method:

	 ( )σ
γ

2
2

new

i iN
=

−
− ∑

t ΦΦµµ  	 (12)

3.2.	 RUL estimation through similarity analysis

The commonly used RUL estimation approach is 
by extrapolating the degradation model of testing units 
across the specified failure threshold (FT). However, 
how to define an appropriate FT for a specified test-
ing unit is still a challenge. The degradation behavior 
of individual engine can differ according to operational 
environment. It is realistic that the FTs can vary and 
should be assigned dynamically for different testing 
unit, rather than static ones based on fixed number of 
states as presented in [8]. In reference [16] the authors 
proposed a dynamic FT assignment technique by look-
ing at distance similarity among learned classifiers 
and indexes of test data. Center of the last cluster of 
the most matched classifier that learned from a train-
ing unit is defined as the FT. In reference [29, 30] and 
this paper, the most matched training unit is selected 
by distance based similarity analysis with all the points 
of the degradation trajectory. Therefore, although com-
putation time is shorter as declared in reference [16], 
the most matched training unit selection process is more 
elaborate by the trajectory similarity measures. There is 
another problem not considered in reference [16]. The 
data of each training unit is clustered independently, so 
there are hundreds of clusters for the training data. From 
the whole view of the training data set, there must be 
serious overlaps between clusters. So the distance be-
tween the data point of the testing unit with A cluster 
(for example) and B cluster might be very close. Be-
sides, the most matched clusters for a testing unit might 
locate in different training units. Then how to select the 
matched classifier in these situations is not illustrated 
by the authors.

3.2.1.	Basic model-matching (BMM) RUL estimation

With enough RtF training data available, RUL prediction is con-
ducted more favorably by similarity analysis, which finds the best 
matched model and locates the point where the preprocessed testing 
data fit into the degradation model to acquire the value of the RUL 
[29]. The similarity between the testing data and the model is meas-
ured by the root mean square error (RMSE). The RUL estimation via 
model-matching method was executed as follows.
The health index data series of the units of the training data 
sets are modeled (e.g., smoothing, regression) to obtain 

1{ 1, , }TrainData traindata traindataS=  (new data series).
Match the first testing unit data “testdata1” with “traindata1” a)	
based on the least mean square error (LMSE) principle to ob-
tain the optimal position 1_ 1test trainpos  with minimal MSE 

1_ 1test trainmse .
Repeat step b; i.e., match “b)	 1testdata ” with oth-
er training data. The optimal position data   

11 1_ 1 1_ 1_{ , , , , }test train test traink test trainSPOS pos pos pos=    
and the corresponding MSE 

11 1_ 1 1_ 1_{ , , , , }test train test traink test trainSMSE mse mse mse=    
are then obtained. Select the minimum MSE from “ 1MSE
” as the optimal matching unit denoted by “ 1testtrain ” for “

1testdata ”. The corresponding optimal position is denoted by “
1 1_test test trainkpos pos= ”.

Repeat step b and step c to match each test unit with c)	
“TrainData” to obtain the optimal matching units 

1 2 1_ { , ,..., }test test testSTrain match train train train=  and posi-
tions 1 2 1{ , ,..., }test test testSPOS pos pos pos= .
Calculate the remaining cycles for the testing units. With regard d)	
to the ith unit, its RUL is ˆ ( )

iRUL testi testiL length train pos= − .

Fig. 4. RUL Prediction error based on model-matching method



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.18, No. 4, 2016626

Science and Technology

3.2.2.	 Improved model-matching (IMM) RUL estimation

As depicted in Fig.4, the RUL prediction error based on the LMSE 
principle is too large. There are several training units that match well 
with a testing unit; however, the training units differ largely from each 
other. The best matching training unit we picked suits the testing unit 
only locally; when applied to predict the RUL, the error became too 
large. The health states of some these testing units usually concentrate 
on “healthy” and “sub-healthy” states, and the health indices change 
gently. This implies that RUL prediction at the early stage of degrada-
tion might not be inaccurate.

To solve this problem, we proposed an improved model-matching 
RUL estimation. The test units can be categorized into three types 
by the health states: the first are the units containing “failure” state; 
the second are the units whose health states concentrate on “healthy” 
and “sub-healthy” and whose health indices are placidly evolving; the 
remaining units are the third type, which contain the “degradation” 
state. We adapted different model-matching strategies for the three 
cases.
Case 1: The first type of unit was treated the same way as in 	

sec.3.2.1.
Case 2: The second type of unit was processed as follows. Suppose 

that the ith testing unit “ itestdata ” was of the second type; 
calculate the MSE values by all the training units accord-
ing to the method proposed in sec.3.2.1, then sort the val-
ues and select p training units with minimum MSE values 

_1 _j _{ , , , , }i i i pmse mse mse  .

Therefore, the related RUL { }1 2, , ,i i ipRUL RUL RUL  
vector was generated. To estimate the ultimate RUL, the p RULs 

were given the weights 1 2{ , , , }pw w w . The weight jw  was ob-
tained by the following formula:

	 _ _
1

p

j i p j i j
j

w mse mse−
=
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The RUL of the ith testing unit was then 
1

ˆ
i

p

RUL j ij
j

L RULω
=

= ⋅∑ .

Case 3: The third type of unit was treated as follows. As in case 2, 
select p matching training units for one testing unit of this 
type. Pick out the last portion of data points from the testing 
unit. Calculate the MSEs with the p training units, and obtain 
the minimum MSE within the p values. The RUL of the test-
ing unit is the one calculated by the minimum MSE related 
training unit.

A good prognostic system not only provides accurate and precise 
RUL predictions but also specifies the level of confidence associated 
with such predictions. In addition to the point estimation, rational 
interval estimation can support the risk decision. The uncertainty of 
RUL prediction arises from several aspects—e.g., the sensory data 
noise, the modeling error, the operational condition variance, the ini-
tial state difference of the system, and the working load variation. 
Therefore, RUL prediction is a complex dynamic nonlinear problem 
[1, 34]. 

When the RUL is estimated by applying the model matching 
method and there are multiple degradation models, each model can 
generate an RUL value intuitively. In this way, an optimal RUL can 
be given in the sense of mathematics and can also output the proba-
bilistic results.

With the samples of the RUL, there are two types of approaches to 
obtain the probabilistic results: one is the parametric method, and the 
other is the nonparametric method. For the first approach, the distribu-
tion of RUL should be estimated first, followed by the parameters of 
the distribution. The parametric method must define the distribution 
type. When the distribution type is unknown, the nonparametric esti-
mation methods are more applicable. The common methods include 
rank method and statistical histogram.

4. Case study on simulated turbofan engines

4.1.	 Data sets and prognostic assessment criterions

The data for demonstration are provided by the prognostic-data-
repository of the PCoE of NASA. The datasets were generated by 
CMAPSS and kept in several text files. A dataset is constructed of 
26 dimensions/columns, wherein the first column is the unit number 
for different engines, the second column is the time index (cycle), the 
third through fifth columns are the settings of operational conditions, 
and the other 21 columns are simulated sensory data [24].

The dataset “train_FD001”, which contains the simulated RtF data, 
was selected for training. The dataset “test_FD001”, which contains the 
partial degradation process data, is used for RUL estimation. The simu-
lation experiment contains one failure mode, which is the deteriora-
tion of the high-pressure compressor (HPC). “Train_FD001” covers the 
RtF process of 100 testing engines and consists of 20,631 data points 
(row vectors). “Test_FD001” contains the data collected in the running 
process with no failures, which is used to predict when the failure will 
occur—in other words, to estimate the RUL. The operational conditions 
of “FD001” are the same but have different initial states, which are 
caused by the variant initial wear and manufacture bias.

For results evaluation, estimated RULs are compared with actual 
RULs provided in the file “Rul_FD001.txt.” Most importantly, for a 
given testing unit, an interval I = [−10,13] is considered to assess RUL 
estimates as on-time, early or late. In PHM context, it is generally 
desirable to have early RUL estimates rather than late RULs. Another 
criterion is the accuracy of prognostics model evaluated by coefficient 
of determination that should be close to 1. 
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4.2.	 Offline learning

As the three parameters out of the 21 sensory signals, i.e. Total 
temperature at HPC outlet (P1), Total pressure at HPC outlet (P2), 
and Ratio of fuel flow to Ps30 (P3), are related with HPC health deg-
radation. They are used to construct the 3-dimeansional feature space. 
Fig. 5 shows the curves of P1, P2 and P3 for one engine (#2). It is 
explicit that the sensory data are contaminated by noise. The charts 
of normalized P1, P2 and P3 are also depicted in Fig. 5. According to 
the framework in Fig. 2, there exist outliers within the raw data, which 
might impact the results. Therefore, outliers should be removed to 
enhance the accuracy of the outputs. The outliers are detected through 
the KNN method and removed from the 20,631 data points. The value 
K is a trial value, and we set different values to test the effects. It is 
discovered that the distances to the K nearest neighbors of the top 10 
points are much larger than those of the others. Then the 10 points are 
removed with K=4000.

The hierarchical clustering for the 20,621 data vectors was con-
ducted to generate the dendrogram in Fig. 6. The cut line in Fig. 6 
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shows that the generated cluster number is 4.The engine 
health states are divided into four classes: healthy state, 
subhealthy state, degraded state, and failure state. The 
color coding of the health states is given in Table 1.

Because “train_FD001” is the RtF dataset of the 
100 engines organized in sequence, according to the 
unit number, the clustering can detect the endpoint of 
each engine. Taking engines #1 and #2 for example, the 
health indices and related health states are shown in Fig. 
7. The health states are denoted in order by “1”, “2”, “3” 
and “4”, which represents the RtF process. 

According to the dendrogram, the failure cluster can 
be further divided to refine the failure state information. 
As shown in Fig.8, there are three patterns of divisions 
for the failure cluster, i.e. 2, 3, and 4 sub-clusters. The 
refined failure state information is shown in Table 2.  
The refined clusters are denoted by RC1 and RC2. We 
will compare RUL estimations based on different health 
indices based on cluster “4” and the refined clusters.

4.3.	 RUL estimation

This section gives the results of RUL estimation 
of the 100 testing units by different methods and in-
put data. 

(1) Different degradation modeling methods
Fig. 5. Curves of 3 parameters for #2 engine

Fig. 6. clustering of the training data

Table 1.	 Results of the clustering of RtF data

Color Green Blue Yellow Red

Health state Healthy Sub-
healthy Degraded Failure

Centroid
P1
P2
P3

0.337718
0.704982
0.734335

0.453279
0.596571
0.61862

0.58049
0.500512
0.503711

0.716569
0.319629
0.30542

Radius 0.37004 0.377641 0.369111 0.415286

Point quantity 6087 5964 6055 2515

Table 2.	 Results of failure state cluster divisions

No. 1 2 3

Sub-cluster Case 2 sub-clusters 3 sub-clusters 4 sub-clusters

Centroid
P1
P2
P3

0.765613
0.322051
0.304777

0.777587
0.259857
0.238734

0.777587
0.259857
0.238734

Point quantity 1774 770 770
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This part is to compare different degradation mod-
eling methods based on health indices derived from 
cluster “4”. The tails of the health indices are not cut. 
And BMM method is used. As shown in Table 3 are 
the results.

(2) Individual parameter versus SHI
This part is to validate the effectiveness of health in-

dices compared with one-dimensional data. The health 
indices are derived from cluster “4” with tails retained. 
RVM and BMM method are used here. The results are 
shown in Table 4.

(3) BMM versus IMM
Before carrying out the IMM for the testing units, 

we classified the testing units based on health state es-
timation. Three typical units (#1, #14 and #20 engines) 
were selected to account for the classification. As shown 
in Fig. 9, the health states of unit #1 are almost “1”, 
meaning that it is in the healthy condition. For unit #14, 
the health states are mostly “2” in the earlier stage but 
switch to “3” in the later stage, which indicates that the 
engine health state is changing from the sub-healthy to 
the degraded state. With regard to the #20 unit, the en-
gine has passed through the 4 states and might be near 
failure. This part compares BMM and IMM with RVM 
modeling algorithm based on health indices derived 
from cluster “4”. The tails of the health indices are not 
cut. Results are displayed in Table 5.

(4) Tail retained versus tail cut
This part is to compare the results based on health 

degradation models with tail retained and cut. RVM 
and IMM are used here. The results are shown in Ta-
ble  6.

The last column of Table 6 indicates the proposed 
method in this paper is effective and has better per-
formance than others. When compared with reference 
[9], the results of on-time RULs and R2 are better.  

Each testing unit had 100 probable RUL values, 
which could be used for uncertainty analysis. Here, the 
nonparametric method was applied to output the inter-
val estimation results based on the IMM method. 

The median of the sorted 100 RULs was obtained 
first. The confidence interval (CI) was set as 70%, 
which means that 70 RUL values were selected. The 
RULs located between the lower confidence limit 

Fig. 7. Health indices and states of #1 and #2 engines

Fig. 8. Failure state cluster further divisions 

Fig. 9. Health state evolutions of the testing engines
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(LCL) and the median occupied approximately 65% of the total 70 
RULs, whereas the RULs located between the median and the upper 
confidence limit (UCL) occupied 35%. Furthermore, we cut off the 
RULs whose corresponding MSE values with the training units were 
larger than 1.5 times the minimum MSE value. The 70% CI then de-
creased to facilitate a more accurate prediction.

Let us take test #31, of which actual RUL is 8, as an example. To 
use the model-matching method, the length of the train unit must be 
longer than the test, and there are 43 train units that meet this require-
ment. The median of these 43 RULs is 10, and its 70% CI is [0, 20] 
(see left part of Fig. 10). If 1.5 times the minimum MSE value is used 
to cut off the RULs, then the median is 6, and the 70% CI is [0, 13] 
(see right part of Fig. 10).

4.	 Conclusion
In this work, we investigated data-driven prognostic methods for 

turbofan engines. The machine condition monitored data are collected 
and used for health state estimation and RUL prediction. We proposed 
a health index synthetization approach by hierarchical clustering and 

distance-based similarity analysis. With RtF data available, the whole 
degradation model was constructed by RVR based on health indices 
of the RtF training unit. Then the RUL of a testing unit was estimated 
by similarity analysis with the degradation models of training units. 
In real world failure prognostics are difficult as the degradation of 
system/subsystem under monitored is complex and nonlinear. The 
simulated engine degradation datasets by CMAPSS are noisy and 
nonlinear, which are employed by many researchers. Some signifi-
cant issues are raised and the adaptive adjustments for the methods are 
highlighted.  In the specified turbofan engine application our work has 
the following advantages.

The health index synthetization is robust even there is no RtF a)	
or failure state data. Since the good state cluster can substitute 
as the baseline. 
The hierarchical clustering algorithm is flexible and needs no b)	
initial settings and little prior knowledge.

Table 6.	 Comparisons between tail cut and retained

Criteria Tail retained
Tail cut

Cluster “4” RC1  RC2

RUL error interval [-56,58] [-74,64] [-57,63] [-58,64]

On-time RULs 39 45 49 60

Early RULs 22 33 27 21

Late RULs 39 22 24 19

R2 0.70 0.58 0.67 0.69

Table 3. Comparisons with different degradation models

Criteria Original Smoothing ER RVM

RUL error interval [-146,87] [-103,48] [-183,79] [-75,114]

On-time RULs 37 24 38 37

Early RULs 42 11 19 40

Late RULs 21 65 43 23

R2 0.2 -0.2 -0.44 0.42

Table 4.	 Comparisons with different input data

Criteria P1 P2 P3 SHI

RUL error interval [-154,70] [-200,89] [-147,82] [-75,114]

On-time RULs 31 34 34 37

Early RULs 36 27 40 40

Late RULs 33 39 26 23

R2 0.08 -0.38 0.25 0.42

Table 5.	 Comparisons between BMM and IMM

Criteria BMM IMM

RUL error interval [-75,114] [-56,58]

On-time RULs 37 39

Early RULs 40 22

Late RULs 23 39

R2 0.42 0.70

Fig. 10. The uncertainty of #31 testing engine RUL estimation
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The proposed methods are applicable in safety-critical systems/c)	
subsystems, as the number of on-time and early RULs are rela-
tively larger.

But still there are a few testing units whose RUL errors are rela-
tive too large. These units are in an early degradation state as a matter 
of fact, which means it is difficult to estimate the RUL of a unit in 
early stage. Besides, in real world, the RtF datasets can hardly be col-
lected so that we cannot construct an ensemble of whole degradation 
models for RUL estimation. In the perspective of this paper, further 

research work should focus on the dynamic RUL estimation methods 
for real in-service engines without RtF datasets.
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