PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Health index synthetization and remaining useful life estimation for turbofan engines based on run-to-failure datasets

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Synteza wskaźników stanu technicznego oraz ocena pozostałego okresu użytkowania silników turbowentylatorowych z wykorzystaniem zbiorów danych o pracy do czasu uszkodzenia
Języki publikacji
EN
Abstrakty
EN
Turbofan engines will gradually degrade until failure occurs or life ends if without maintenance. Reliable degradation assessment and remaining useful life (RUL) estimation make sense on both aviation safety and rational maintenance decisions. This paper proposes a data-driven prognostic method on the premise of run-to-failure (RtF) data which are multivariate sensory data collected from the engines operating from normal to failure. After necessary pre-processing to the data, clustering analysis is executed to generate the clusters which represent the multi-states of the degradation process. The failure state cluster is extracted, and then the distance between the pre-processed data and the cluster is calculated. Therefore, one-dimensional time series are generated and defined as the health indices. Afterwards the degradation models are built based on the health indices. Finally, the RUL of a testing unit can be estimated by similarity analysis with the models. Hierarchical clustering (HC) and relevance vector machine (RVM) are the main algorithms employed in this paper. To validate the proposition, a case study is performed on turbofan engines data from Prognostics Center of Excellence (PCoE) at NASA Ames Research Center, and sufficient comparisons were given.
PL
Silniki turbowentylatorowe niepoddane konserwacji ulegają stopniowej degradacji aż do czasu wystąpienia uszkodzenia lub zakończenia cyklu życia. Rzetelna ocena degradacji oraz pozostałego okresu użytkowania (RUL) mają wpływ zarówno na bezpieczeństwo maszyn lotniczych jak i racjonalne podejmowanie decyzji dotyczących utrzymania ruchu. W artykule zaproponowano sterowaną danymi metodę prognostyczną opartą na danych o pracy do czasu uszkodzenia (run-to failure, RTF), które są wielowymiarowymi danymi sensorycznymi zbieranymi podczas normalnej pracy silnika aż do jego uszkodzenia. Po niezbędnej wstępnej obróbce danych, przeprowadzono analizę skupień w celu wygenerowania skupień reprezentujących multi-stany procesu degradacji. Wyodrębniono klaster stanów uszkodzenia, a następnie obliczono odległość między wstępnie przetworzonymi danymi a wyodrębnionym klastrem. Następnie wygenerowano jednowymiarowe szeregi czasowe, które zdefiniowano jako wskaźniki stanu technicznego. Na podstawie tych wskaźników zbudowano modele degradacji. Wreszcie, w oparciu o analizę podobieństwa do opracowanych modeli oceniono RUL jednostki testowej. Główne algorytmy zastosowane w niniejszym opracowaniu to algorytmy grupowania hierarchicznego (HC) oraz maszyny wektorów istotnych (RVM). Aby zweryfikować zaproponowaną w pracy metodę, przeprowadzono studium przypadku z wykorzystaniem danych dot. silników turbowentylatorowych pochodzące z Prognostic Center of Excellence (PCoE) przy NASA Ames Research Center oraz przedstawiono odpowiednie porównania.
Rocznik
Strony
621--631
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Technology and Engineering Center for Space Utilization Chinese Academy of Sciences No.9 South Dengzhuang Rd, Haidian Dist Beijing, 10094, China
autor
  • Technology and Engineering Center for Space Utilization Chinese Academy of Sciences No.9 South Dengzhuang Rd, Haidian Dist Beijing, 10094, China
autor
  • Technology and Engineering Center for Space Utilization Chinese Academy of Sciences No.9 South Dengzhuang Rd, Haidian Dist Beijing, 10094, China
autor
  • Technology and Engineering Center for Space Utilization Chinese Academy of Sciences No.9 South Dengzhuang Rd, Haidian Dist Beijing, 10094, China
Bibliografia
  • 1. Adriaan Van Horenbeek, LilianePintelon. A dynamic predictive maintenance policy for complex multi-component systems. Reliability Engineering & System Safety 2013; 120: 39-50, http://dx.doi.org/10.1016/j.ress.2013.02.029.
  • 2. Angiulliand F, Pizzuti C. Fast outlier detection in high dimensional spaces. In proceedings of the sixth European conference on the principles of data mining and knowledge discovery 2002; 15-26.
  • 3. Borguet S, Leonard O. Coupling principal component analysis and Kalman filtering algorithms for on-line aircraft engine diagnostics. Control Engineering Practice 2009; 17: 494-502, http://dx.doi.org/10.1016/j.conengprac.2008.09.008.
  • 4. Dan S, Donald L.S. Kalman filter constraint switching for turbofan engine health estimation. European Journal of Control 2006; 12:331-343, http://dx.doi.org/10.3166/ejc.12.341-343.
  • 5. Devillez A, Billaudel P, Lecolier GV. A fuzzy hybrid hierarchical clustering method with a new criterion able to find the optimal partition. Fuzzy Sets Syst. 2002; 128(3):323–338, http://dx.doi.org/10.1016/S0165-0114(01)00187-7.
  • 6. D. Frederick, J. DeCastro, and J. Litt, "User's Guide for the Commercial Modular Aero-Propulsion System Simulation (CMAPSS)," NASA/ ARL, Technical Manual TM2007-215026, 2007.
  • 7. D.J.C.MacKay. Bayesian methods for backpropagation networks. Spring New York 1996; 211-254
  • 8. E. Ramasso, M. Rombaut, and N. Zerhouni, Joint prediction of continuous and discrete states in time-series based on belief functions. IEEE Trans. Cybern. 2013; 43 (1): 37–50, http://dx.doi.org/10.1109/TSMCB.2012.2198882.
  • 9. Godolphin EJ. A direct representation for the large sample maximum likelihood estimator of a Gaussian autoregressive moving average process. Biometrika 1984; 71:281–289, http://dx.doi.org/10.2307/2336244.
  • 10. Goebel K, Saha B, Saxena A, 2006, A comparison of three data-driven techniques for prognostics, IEEE aerospace conference, Big Sky, MT, Mar 4-11.
  • 11. Hu C, D.Youn B, Wang P.F, T.Yoon J. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering and Systems Safety 2012; 103: 120-135, http://dx.doi.org/10.1016/j.ress.2012.03.008.
  • 12. Han J.W, Kamber M, Pei J. Data mining: concepts and techniques. Elsevier. 2012, http://dx.doi.org/10.1007/978-1-4419-1428-6_3752.
  • 13. Hannan EJ, Rissanen J. Recursive estimation of mixed autoregressive-moving average order. Biometrika 1982; 69: 81–94, http://dx.doi.org/10.1093/biomet/69.1.81.
  • 14. He Z.K, Liu G.B, Zhao XJ, Wang MH. Overview of Gaussian process regression. Control and Decision 2013; 28(8):1121-826.
  • 15. Huang R.Q, Xi L.F, Li X.L, Liu C.R, Qiu H, Lee J. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mechanical Systems and Signal Processing 2007; 21: 193-207, http://dx.doi.org/10.1016/j.ymssp.2005.11.008.
  • 16. Kamran J, Rafael G, Noureddine Z. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering. IEEE Transactions on Cybernetics 2015; 45(12): 2626-2639, http://dx.doi.org/10.1109/TCYB.2014.2378056.
  • 17. Liao T.W. Clustering of time series data-a survey. Pattern Recognition 2005; 38:1857–1874, http://dx.doi.org/10.1016/j.patcog.2005.01.025.
  • 18. Liu D.T, Pang J.Y, Zhou J.B, Peng Y, Pecht M. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectronics Reliability 2013; 53: 832-839, http://dx.doi.org/10.1016/j.microrel.2013.03.010.
  • 19. Lozano E, Acuna E, 2005, Parallel algorithms for distance-based and density-based outliers, Fifth IEEE International conference on data mining, Miami, FL, Dec 6-9.
  • 20. Neal RM. Bayesian Learning for Neural Networks. Lecture Notes in Statistics 1996; 118, http://dx.doi.org/10.1007/978-1-4612-0745-0.
  • 21. Qiu H, Lee J, Lin J, Yu G, Robust performance degradation assessment methods for enhanced rolling element bearing prognostics, Advanced Engineering Informatics 2003; 17: 127–140, http://dx.doi.org/10.1016/j.aei.2004.08.001.
  • 22. Saha B, Goebel K, Poll S, Christophersen J. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement 2009; 58(2): 291-6, http://dx.doi.org/10.1109/TIM.2008.2005965.
  • 23. Saxena A, Celaya J, Saha B, Saha S, Goebel K. Metrics for Offline Evaluation of Prognostic Performance. International Journal of Prognostics and health management 2010; 1(1): 2153-2648,.
  • 24. Saxena A, Goebel K, Simon D, Eklund N., 2008, Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation, IEEE International Conference on Prognositcs and Health Management, Denver, CO, Oct 6-9, http://dx.doi.org/10.1109/phm.2008.4711414.
  • 25. Tang X.Q, Zhu P. Hierarchical Clustering Problems and Analysis of Fuzzy Proximity Relation on Granular Space. IEEE Transactions on Fuzzy Systems 2013; 21(5): 814-824, http://dx.doi.org/10.1109/TFUZZ.2012.2230176.
  • 26. Tipping M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 2001; 1: 211-244.
  • 27. Tipping M. The Relevance Vector Machine. Neural Networks & Machine Learning 1999; 1(3): 652-658.
  • 28. Tsekouras G, Sarimreis H, Kavakli E, Bafas G. A hierarchical fuzzy clustering approach to fuzzy modeling. Fuzzy Sets Syst. 2005; 150(2): 246–266, http://dx.doi.org/10.1016/j.fss.2004.04.013.
  • 29 Wang T. Trajectory Similarity Based Prediction for RUL Estimation. PhD thesis, University of Cincinnati 2010.
  • 30. Wang T, Yu J, Siegel D, and Lee J, 2008, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, International Conference on Prognostics and Health Management, Denver, CO, Oct 6-9, http://dx.doi.org/10.1109/phm.2008.4711421.
  • 31. Xiao W.C, Yang Y, Wang H.J, Li T.R, Xing H.L. Semi-supervised hierarchical clustering ensemble and its application. Neurocomputing 2016; 173: 1362-1376, http://dx.doi.org/10.1016/j.neucom.2015.09.009.
  • 32. Yan J, Koc M, Lee J. A prognostic algorithm for machine performance assessment and its application. Production Planning & Control 2004; 5(8): 796-801, http://dx.doi.org/10.1080/09537280412331309208.
  • 33. Zheng X.J, Fang H.J. An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. Reliability Engineering and System Safety 2015; 144: 74-82, http://dx.doi.org/10.1016/j.ress.2015.07.013.
  • 34. Zio E, Di Maio F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant. Reliability Engineering and System Safety 2010; 95(1): 49-57, http://dx.doi.org/10.1016/j.ress.2009.08.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a78101f7-41c9-4c0e-9d79-2743c0673f6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.