PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A distributed algorithm for protein identification from tandem mass spectrometry data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tandem mass spectrometry is an analytical technique widely used in proteomics for the high-throughput characterization of proteins in biological samples. Modern in-depth proteomic studies require the collection of even millions of mass spectra representing short protein fragments (peptides). In order to identify the peptides, the measured spectra are most often scored against a database of amino acid sequences of known proteins. Due to the volume of input data and the sizes of proteomic databases, this is a resource-intensive task, which requires an efficient and scalable computational strategy. Here, we present SparkMS, an algorithm for peptide and protein identification from mass spectrometry data explicitly designed to work in a distributed computational environment. To achieve the required performance and scalability, we use Apache Spark, a modern framework that is becoming increasingly popular not only in the field of “big data” analysis but also in bioinformatics. This paper describes the algorithm in detail and demonstrates its performance on a large proteomic dataset. Experimental results indicate that SparkMS scales with the number of worker nodes and the increas-ing complexity of the search task. Furthermore, it exhibits a protein identification efficiency comparable to X!Tandem, a widely-used proteomic search engine.
Rocznik
Strony
16--27
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
  • Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Poland
autor
  • Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Poland
  • Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Poland
  • Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Poland
Bibliografia
  • [1] Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207. https://doi.org/10.1038/nature01511
  • [2] Bjornson, R. D., Carriero, N. J., Colangelo, C., Shifman, M., Cheung, K. H., Miller, P. L., & Williams, K. (2008). X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers. Journal of proteome research, 7(1), 293–299. https://doi.org/10.1021/pr0701198
  • [3] Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of proteome research, 10(4), 1794–1805. https://doi.org/10.1021/pr101065j
  • [4] Craig, R., & Beavis, R. C. (2004). TANDEM: matching proteins with tandem mass spectra. Bioinformatics (Oxford, England), 20(9), 1466–1467. https://doi.org/10.1093/bioinformatics/bth092
  • [5] Creasy, D. M., & Cottrell, J. S. (2004). Unimod: Protein modifications for mass spectrometry. Proteomics, 4(6), 1534–1536. https://doi.org/10.1002/pmic.200300744
  • [6] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 51(1), 107–113. https://doi.org/10.1145/1327452.1327492
  • [7] Duncan, D. T., Craig, R., & Link, A. J. (2005). Parallel tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem. Journal of proteome research, 4(5), 1842–1847. https://doi.org/10.1021/pr050058i
  • [8] Guo, R., Zhao, Y., Zou, Q., Fang, X., & Peng, S. (2018). Bioinformatics applications on Apache Spark. GigaScience, 7(8), giy098. https://doi.org/10.1093/gigascience/giy098
  • [9] Hernandez, P., Müller, M., & Appel, R. D. (2006). Automated protein identification by tandem mass spectrometry: issues and strategies. Mass spectrometry reviews, 25(2), 235–254. https://doi.org/10.1002/mas.20068
  • [10] Horlacher, O., Lisacek, F., & Müller, M. (2016). Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries. Journal of proteome research, 15(3), 721–731. https://doi.org/10.1021/acs.jproteome.5b00877
  • [11] Käll, L., Storey, J. D., MacCoss, M. J., & Noble, W. S. (2008). Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. Journal of proteome research, 7(1), 29–34. https://doi.org/10.1021/pr700600n
  • [12] Kim, S., & Pevzner, P. A. (2014). MS-GF+ makes progress towards a universal database search tool for proteomics. Nature communications, 5, 5277. https://doi.org/10.1038/ncomms6277
  • [13] Lewis, S., Csordas, A., Killcoyne, S., Hermjakob, H., Hoopmann, M. R., Moritz, R. L., Deutsch, E. W., & Boyle, J. (2012). Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework. BMC bioinformatics, 13, 324. https://doi.org/10.1186/1471-2105-13-324
  • [14] Milloy, J. A., Faherty, B. K., & Gerber, S. A. (2012). Tempest: GPU-CPU computing for high-throughput database spectral matching. Journal of proteome research, 11(7), 3581–3591. https://doi.org/10.1021/pr300338p
  • [15] Orzechowska, K., & Rubel, T. (2021). An SVM-based peptide identification algorithm integrated into a database search engine. Proceedings of the XXII Polish Conference on Biocybernetics and Biomedical Engineering.
  • [16] Paulo, J. A. (2013). Practical and Efficient Searching in Proteomics: A Cross Engine Comparison. WebmedCentral, 4(10), WMCPLS0052. https://doi.org/10.9754/journal.wplus.2013.0052
  • [17] Paziewska, A., Polkowski, M., Rubel, T., Karczmarski, J., Wiechowska-Kozlowska, A., Dabrowska, M., Mikula, M., Dadlez, M., & Ostrowski, J. (2018). Mass Spectrometry-Based Comprehensive Analysis of Pancreatic Cyst Fluids. BioMed research international, 2018, 7169595. https://doi.org/10.1155/2018/7169595
  • [18] Perkins, D. N., Pappin, D. J., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551–3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
  • [19] Pratt, B., Howbert, J. J., Tasman, N. I., & Nilsson, E. J. (2012). MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services. Bioinformatics (Oxford, England), 28(1), 136–137. https://doi.org/10.1093/bioinformatics/btr615
  • [20] Rappsilber, J. (2011). The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. Journal of Structural Biology, 173(3), 530–540. https://doi.org/10.1016/j.jsb.2010.10.014
  • [21] Sadygov, R. G., Cociorva, D., & Yates, J. R., 3rd (2004). Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nature methods, 1(3), 195–202. https://doi.org/10.1038/nmeth725
  • [22] Taus, T., Köcher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C., & Mechtler, K. (2011). Universal and confident phosphorylation site localization using phosphoRS. Journal of proteome research, 10(12), 5354–5362. https://doi.org/10.1021/pr200611n
  • [23] UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic acids research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • [24] Vizcaíno, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q. W., Wang, R., & Hermjakob, H. (2016). 2016 update of the PRIDE database and its related tools. Nucleic acids research, 44(22), 11033. https://doi.org/10.1093/nar/gkw880
  • [25] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster Computing with Working Sets. Proceedings of the 2nd USENIX conference on Hot topics in cloud computing (HotCloud'10). USENIX Association.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a77ec5cc-e771-4b34-8915-3c3cc6959f28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.