PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semi-theoretical model for mean sediment resting time of spherical particles: the role of hydrodynamic impulses and sphere size nonuniformity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prediction of bedload rates in gravel-bed rivers at low-to-moderate flow conditions, where bedload movement is intermittent, remains a challenging problem. While the virtual velocity concept provides a useful approach to bedload rate estimation in the intermittent movement regime, virtual velocity estimation remains hindered by a lack of tools for predicting mean sediment resting time. As a first step toward sediment resting time estimation in gravel beds, the present study develops a semi-theoretical resting time model applicable to nonuniform gravel-sized spherical particles. The model is based on the consideration that interactions of near-bed flow with bed material lead to mobilization of individual resting particles during hydrodynamic momentum transfer events (i.e., impulses). Thus, resting time is affected by impulse magnitude and timing. The primary premise underpinning model development is that an instantaneous velocity time-series generation approach based on the velocity spectrum can be used to mimic hydrodynamic impulses and simulate resting times. Based on past findings, two model parameters are considered important to advancing resting time predictions in gravel beds. First, the relative particle size allows size-fractional resting time predictions for a nonuniform sediment mixture. Second, the hindrance coefficient accounts for hiding effects and enables resting time predictions for different bed structure types. To provide calibration and verification data, laboratory experiments documenting impulse statistics and mean resting times for a range of flow and relative particle size conditions were also performed. The verified model exhibits mean resting times with similar magnitude and trends with increasing stress compared with experimental verification data.
Czasopismo
Rocznik
Strony
2883--2904
Opis fizyczny
Bibliogr. 127 poz., rys., tab.
Twórcy
  • Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
  • Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
  • Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
  • USDA-ARS, National Laboratory for Agriculture and the Environment, Ames, IA, USA
  • Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
  • NuGlobal Solutions, LLC, 608 Mabry Hood Road, Suite 209, Knoxville, TN, USA
Bibliografia
  • 1. Akeila E, Salcic Z, Swain A (2010) Smart pebble for monitoring riverbed sediment transport. Sensors 10(11):1705–1717. https://doi.org/10.1109/JSEN.2010.2046726
  • 2. Ali SZ, Dey S (2016) Hydrodynamics of sediment threshold. Phys Fluids 28:075103. https://doi.org/10.1063/1.4955103
  • 3. Ancey C (2020) Bedload transport: a walk between randomness and determinism Part 1. The state of the art. J Hydraul Res 58(1):1–17. https://doi.org/10.1080/00221686.2019.1702594
  • 4. Ashmore PE (1991) How do gravel-bed rivers braid? Can J Earth Sci 28:326–341. https://doi.org/10.1139/e91-030
  • 5. Ballio F, Pokrajac D, Radice A, Sadabadi SA (2018) Lagrangian and Eulerian description of bed load transport. J Geophys Res Earth Surf 123(2):384–408. https://doi.org/10.1002/2016JF004087
  • 6. Bettess R (1984) Initiation of sediment transport in gravel streams. Proc of the Inst Civil Eng 77(1):79–88. https://doi.org/10.1680/iicep.1984.1275
  • 7. Bialik RJ, Rowiński PM, Czernuszenko W, Nikora VI (2010) A numerical study of turbulence influence on saltating grains. In: Dittrich A, Koll K, Aberle J, Geisenhainer H (eds) Proc Int Conf on River Flow 2010. Braunschweig, Germany, Bundesanstalt für Wasserbau, Karlsruhe, pp 105–112
  • 8. Bialik RJ, Nikora VI, Rowiński PM (2012) 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow. Acta Geophys 60(6):1639–1660. https://doi.org/10.2478/s11600-012-0003-2
  • 9. Bigillon F, Niño F, García MH (2006) Measurements of turbulence characteristics in an open-channel flow over a transitionally-rough bed using particle image velocimetry. Exp Fluids 41(6):857–867. https://doi.org/10.1007/s00348-006-0201-2
  • 10. Biron PM, Roy AG, Best JL (1995) A scheme for resampling, filtering, and subsampling unevenly spaced laser doppler anemometer data. Math Geol 27(6):731–748. https://doi.org/10.1007/BF02273535
  • 11. Böhm T, Ancey C, Frey P, Reboud J-L, Ducottet C (2004) Fluctuations of the solid discharge of gravity-driven particle flows in a turbulent stream. Phys Rev E 69:061307. https://doi.org/10.1103/PhysRevE.69.061307
  • 12. Brenna A, Surian N, Mao L (2019) Virtual velocity approach for estimating bed material transport in gravel‐bed rivers: key factors and significance. Water Resour Res 55:1651–1674. https://doi.org/10.1029/2018WR023556
  • 13. Buffington JM, Dietrich WE, Kirchner JW (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resour Res 28(2):411–425. https://doi.org/10.1029/91WR02529
  • 14. Bunte K, Abt SR (2005) Effect of sampling time on measured gravel bed load transport rates. Water Resour Res 41:W11405. https://doi.org/10.1029/2004WR003880
  • 15. Cameron SM, Nikora VI, Stewart MT (2017) Very-large-scale motions in rough-bed open-channel flow. J Fluid Mech 814:416–429. https://doi.org/10.1017/jfm.2017.24
  • 16. Cameron SM, Nikora VI, Witz MJ (2020) Entrainment of sediment particles by very large-scale motions. J Fluid Mech 888:A7. https://doi.org/10.1017/jfm.2020.24
  • 17. Campagnol J, Radice A, Nokes R, Bulankina V, Lescova A, Ballio F (2013) Lagrangian analysis of bed-load sediment motion: database contribution. J Hydraul Res 51(5):589–596. https://doi.org/10.1080/00221686.2013.812152
  • 18. Ceccheto M, Tregnaghi M, Bottacin-Busolin A, Tait S, Marion A (2017) Statistical description on the role of turbulence and grain interference on particle entrainment from gravel beds. J Hydraul Res 143(1):06016021. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001224
  • 19. Celik AO, Diplas P, Dancey CL, Valyrakis M (2010) Impulse and particle dislodgement under turbulent flow conditions. Phys Fluids 22:046601. https://doi.org/10.1063/1.3385433
  • 20. Celik AO, Diplas P, Dancey CL (2013) Instantaneous turbulent forces and impulse on a rough bed: Implications for initiation of bed material movement. Water Resour Res 49:2213–2227. https://doi.org/10.1002/wrcr.20210
  • 21. Chang HH (1988) Fluvial processes in River Engineering. John Wiley and Sons
  • 22. Charru F, Mouilleron H, Eiff O (2004) Erosion and deposition of particles on a bed sheared by viscous flow. J Fluid Mech 519:55–80. https://doi.org/10.1017/S0022112004001028
  • 23. Cheng N-S, Chiew Y-M (1998) Pickup probability for sediment entrainment. J Hydraul Eng 124(2):232–235. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(232)
  • 24. Church M, Hassan MA, Wolcott JF (1998) Stabilizing self-organized structures in gravel-bed stream channels: field and experimental observations. Water Resour Res 34(11):3169–3179
  • 25. Colosimo C, Copertino VA, Veltri M (1988) Friction factor evaluation in gravel-bed rivers. J Hydraul Eng 114(8):861–876. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(861)
  • 26. Cudden JR, Hoey TB (2003) The causes of bedload pulses in a gravel channel: the implications of bedload grain-size distributions. Earth Surf Process Landf 28(13):1411–1428. https://doi.org/10.1002/esp.5210
  • 27. Detert M (2008) Hydrodynamic processes at the water-sediment interface of streambeds. Dissertation, University of Karlsruhe, Karlsruhe, Germany
  • 28. Dey S (1999) Sediment threshold. Appl Math Model 23:399–417. https://doi.org/10.1016/S0307-904X(98)10081-1
  • 29. Dey S, Ali SZ (2017) Stochastic mechanics of loose boundary particle transport in turbulent flow. Phys Fluids 29:055103. https://doi.org/10.1063/1.4984042
  • 30. Dey S, Ali SZ (2018) Review article: advances in modeling of bed particle entrainment sheared by turbulent flow. Phys Fluids 30:061301. https://doi.org/10.1063/1.5030458
  • 31. Dey S, Ali SZ, Padhi E (2020) Hydrodynamic lift on sediment particles at entrainment: present status and its prospect. J Hydraul Eng 146(6):03120001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001751
  • 32. Diplas P, Dancey CL, Celik AO, Valyrakis M, Greer K, Akar T (2008) The role of impulse on the initiation of particle movement under turbulent flow conditions. Science 322:717–720. https://doi.org/10.1126/science.1158954
  • 33. Drake TG, Shreve RL, Dietrich WE, Whiting PJ, Leopold LB (1988) Bedload transport of fine gravel observed by motion-picture photography. J Fluid Mech 192:193–217. https://doi.org/10.1017/S0022112088001831
  • 34. Dwivedi A, Melville BW, Shamseldin AY, Guha TK (2011a) Flow structures and hydrodynamic force during sediment entrainment. Water Resour Res 47:W01509. https://doi.org/10.1029/2010WR009089
  • 35. Dwivedi A, Melville BW, Shamseldin AY, Guha TK (2011b) Analysis of hydrodynamic lift on a bed sediment particle. J Geophys Res 116:F02015. https://doi.org/10.1029/2009JF001584
  • 36. Dwivedi A, Melville BW, Raudkivi AJ, Shamseldin AY, Chiew Y-M (2012) Role of turbulence and particle exposure on entrainment of large spherical particles in flows with low relative submergence. J Hydraul Eng 138(12):1022–1030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000632
  • 37. Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. US Dept of Agriculture, Tech Bull 1026.
  • 38. Elhakeem M, Papanicolaou AN, Tsakiris AG (2017) A probabilistic model for sediment entrainment: the role of bed irregularity. Int J Sediment Res 32:137–148. https://doi.org/10.1016/j.ijsrc.2016.11.001
  • 39. Fathel SL, Furbish DJ, Schmeeckle MW (2015) Experimental evidence of statistical ensemble behavior in bed load sediment transport. J Geophys Res Earth Surf 120:2298–2317. https://doi.org/10.1002/2015JF003552
  • 40. Ferguson RI, Wathen SJ (1998) Tracer-pebble movement along a concave river profile: virtual velocity in relation to grain size and shear stress. Water Resour Res 34(8):2031–2038. https://doi.org/10.1029/98WR01283
  • 41. Gomez B, Phillips JD (1999) Deterministic uncertainty in bed load transport. J Hydraul Eng 125:305–308. https://doi.org/10.1061/(asce)0733-9429(1999)125:3(305)
  • 42. Gray JR, Laronne JB, Marr JDG (2010) Bedload surrogate monitoring technologies. US Geological Survey Scientific Investigations Report 2010–5091. US Geological Survey, Reston, VA.
  • 43. Habersack HM (2001) Radio-tracking gravel particles in a large braided river in New Zealand: a field test of the stochastic theory of bed load transport proposed by Einstein. Hydrol Process 15(3):377–391
  • 44. Haschenburger JK, Church M (1998) Bed material transport estimated from the virtual velocity of sediment. Earth Surf Process Landf 23:791–808. https://doi.org/10.1002/(SICI)1096-9837(199809)23:9%3c791::AID-ESP888%3e3.0.CO;2-X
  • 45. Haschenburger JK, Wilcock PR (2003) Partial transport in a natural gravel bed channel. Water Resour Res 39(1):1020. https://doi.org/10.1029/2002WR001532
  • 46. Hassan MA, Church M, Ashworth PJ (1992) Virtual rate and mean distance of travel of individual clasts in gravel-bed channels. Earth Surf Process Landf 17:617–627. https://doi.org/10.1002/esp.3290170607
  • 47. Heyman J (2019) TracTrac: a fast multi-object tracking algorithm for motion estimation. Comput Geosci 128:11–18. https://doi.org/10.1016/j.cageo.2019.03.007
  • 48. Hufnagel J, Macvicar BJ (2018) Design and performance of a radio frequency identification scanning system for sediment tracking in a purpose-built experimental channel. J Hydraul Eng 144(2):06017028. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001412
  • 49. Hunt AG, Papanicolaou AN (2003) Tests of predicted downstream transport of clasts in turbulent flow. Adv Water Resour 26:1205–1211. https://doi.org/10.1016/j.advwatres.2003.06.001
  • 50. Jain SC (1992) Note on lag in bedload discharge. J Hydraul Eng 118(6):904–917. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:6(904)
  • 51. Jerolmack DJ, Paola C (2010) Shredding of environmental signals by sediment transport. Geophys Res Lett 37:L19401. https://doi.org/10.1029/2010GL044638
  • 52. Jiang Y, Tao J, Wang D (2014) Simulation of non-Gaussian stochastic processes by amplitude modulation and phase reconstruction. Wind Struct 18(6):693–715. https://doi.org/10.12989/was.2014.18.6.693
  • 53. Jimenez J (1998) Turbulent velocity fluctuations need not be Gaussian. J Fluid Mech 376:139–147. https://doi.org/10.1017/S0022112098002432
  • 54. Julien PY, Bounvilay B (2013) Velocity of rolling bed load particles. J Hydraul Eng 139:177–186. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000657
  • 55. Katul G, Chu C-R (1998) A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Bound-Lay Meteorol 86:279–312. https://doi.org/10.1023/A:1000657014845
  • 56. King JG, Emmett WW, Whiting PJ, Kenworthy RP, Barry JJ (2004) Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho. In: Gen. Tech. Rep. RMRS-GTR-131 (p. 26). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  • 57. Kirkgöz MS, Ardiçlioglu M (1997) Velocity profiles of developing and developed open channel flow. J Hydraul Eng 123(12):1099–1105. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1099)
  • 58. Kironoto BA, Graf WH (1994) Turbulence characteristics in rough uniform open-channel flow. Proc Inst Civ Eng Water Maritime Energy 106(4):333–344. https://doi.org/10.1680/iwtme.1994.27234
  • 59. Klösch M, Habersack H (2018) Deriving formulas for an unsteady virtual velocity of bedload tracers. Earth Surf Process Landf 43:1529–1541. https://doi.org/10.1002/esp.4326
  • 60. Knapp D (2002) Applications of particle velocity to bedload motion. MS Thesis, Washington State University.
  • 61. Kramer H (1935) Sand mixtures and sand movement in fluvial models. Trans Am Soc Civ Eng 100:798–878. https://doi.org/10.1061/TACEAT.0004653
  • 62. Kumar KS, Stathopoulos T (1999) Synthesis of non-Gaussian wind pressure time series on low building roofs. Eng Struct 21:1086–1100. https://doi.org/10.1016/S0141-0296(98)00069-8
  • 63. Kyriakopoulos T (2020) Lagrangian bedload movement prediction using the virtual velocity approach. MS Thesis, The University of Tennessee, Knoxville.
  • 64. Lajeunesse E, Malverti L, Charru F (2010) Bed load transport in turbulent flow at the grain scale: experiments and modelling. J Geophys Res 115:F04001. https://doi.org/10.1029/2009JF001628
  • 65. Lamarre H, MacVicar B, Roy AG (2005) Using passive integrated transponder (PIT) tags to investigate sediment transport in gravel-bed rivers. J Sed Res 75:736–741. https://doi.org/10.2110/jsr.2005.059
  • 66. Lamb MP, Dietrich WE, Venditti JG (2008) Is the critical Shields stress for incipient motion dependent on channel-bed slope? J Geophys Res 113:F02008. https://doi.org/10.1029/2007JF000831
  • 67. Lamb MP, Brun F, Fuller BM (2017a) Hydrodynamics of steep streams with planar coarse-grained beds: turbulence, flow resistance, and implications for sediment transport. Water Resour Res 53:2240–2263
  • 68. Lamb MP, Brun F, Fuller BM (2017b) Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: implications for flow resistance and sediment transport. Water Resour Res 53:7607–7629
  • 69. Lauth TJ, Papanicolaou AN (2009) Application of radio frequency tracers to individual and group particle displacement within a laboratory. In: Starrett S (ed) Proc World Environmental and Water Resources Congress 2009: Great Rivers, ASCE, Reston, VA, pp. 2264–2271
  • 70. Lee H, Balachandar S (2012) Critical shear stress for incipient motion of a particle on a rough bed. J Geophys Res 117:F01026. https://doi.org/10.1029/2011JF002208
  • 71. Lee H, Ha MY, Balachandar S (2012) Work-based criterion for particle motion and implication for turbulent bed-load transport. Phys Fluids 24:116604. https://doi.org/10.1063/1.4767541
  • 72. Ling C-H (1995) Criteria for incipient motion of spherical sediment particles. J Hydraul Eng 121(6):472–478. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(472)
  • 73. Maldonado S, de Almeida G (2019) Theoretical impulse threshold for particle dislodgement. J Fluid Mech 863:893–903. https://doi.org/10.1017/jfm.2018.996
  • 74. Maniatis G, Hoey TB, Hassan MA, Sventek J, Hodge R, Drysdale T, Valyrakis M (2017) Calculating the explicit probability of entrainment based on inertial acceleration measurements. J Hydraul Eng 143(4):04016097. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001262
  • 75. Maniatis G, Hoey T, Hodge R, Rickenmann D, Badoux A (2020) Inertial drag and lift forces for coarse grains on rough alluvial beds. Earth Surf Dynam 8:1067–1099. https://doi.org/10.5194/esurf-8-1067-2020
  • 76. Mao L, Picco L, Lenzi MA, Surian N (2017) Bed material transport estimate in large gravel-bed rivers using the virtual velocity approach. Earth Surf Process Landf 42:595–611. https://doi.org/10.1002/esp.4000
  • 77. Miller RL, Byrne RJ (1966) The angle of repose for a single grain on a fixed rough bed. Sedimentology 6:303–314. https://doi.org/10.1111/j.1365-3091.1966.tb01897.x
  • 78. Montgomery DR, Buffington JM (1997) Channel-reach morphology in mountain drainage basins. GSA Bull 109(5):596–611. https://doi.org/10.1130/0016-7606(1997)109%3c0596:CRMIMD%3e2.3.CO;2
  • 79. Naden P (1987) An erosion criterion for gravel-bed rivers. Earth Surf Process Landf 12:83–93
  • 80. Neill CR, Yalin MS (1969) Qualitative definition of beginning of bed movement. J Hydraul Div 95(1):585–587. https://doi.org/10.1061/JYCEAJ.0002022
  • 81. Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. Balkema, Rotterdam
  • 82. Nikora V (2005) Flow turbulence over mobile gravel-bed: spectral scaling and coherent structures. Acta Geophys Polonica 53(4):539–552
  • 83. Nikora V (2007) Hydrodynamics of gravel-bed rivers: scale issues. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-Bed Rivers VI: From Process Understanding to River Restoration. Elsevier, pp 61–81
  • 84. Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:9(679)
  • 85. Nikora V, Heald J, Goring D, McEwan I (2001) Diffusion of saltating particles in unidirectional water flow over a rough granular bed. J Phys A Math Gen 34(50):L743–L749. https://doi.org/10.1088/0305-4470/34/50/103
  • 86. Nikora V, Habersack H, Huber T, McEwan I (2002) On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resour Res 38(6):17. https://doi.org/10.1029/2001WR000513
  • 87. Niño Y, García M (1998) Experiments on saltation of sand in water. J Hydraul Eng 124(10):1014–1025. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:10(1014)
  • 88. Paintal AS (1971) A stochastic model of bed load transport. J Hydraul Res 9(4):527–554. https://doi.org/10.1080/00221687109500371
  • 89. Papanicolaou AN, Tsakiris AG (2017) Boulder effects on turbulence and sediment transport. In: Tsutsumi D, Laronne JB (eds) Gravel bed rivers: Processes and disasters, Hoboken. Wiley, NJ
  • 90. Papanicolaou AN, Diplas P, Balakrishnan M, Dancey CL (1999) Computer vision technique for tracking bed load movement. J Comput Civ Eng 13(2):71–79. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(71)
  • 91. Papanicolaou AN, Diplas P, Evangelopoulos N, Fotopoulos S (2002a) Stochastic incipient motion criterion for spheres under various bed packing conditions. J Hydraul Eng 128:369–380. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:4(369)
  • 92. Papanicolaou AN, Knapp D, Strom K (2002b) Bedload predictions by using the concept of particle velocity: Applications. Proc. ASCE/EWRI and IAHR Int Conf on Hydraulic Measurements and Experimental Methods, ASCE, Reston, Va.
  • 93. Papanicolaou AN, Elhakeem M, Knapp D (2009) Evaluation of a gravel transport sensor for bed load measurements in natural flows. Int J Sed Res 24(1):1–15. https://www.sciencedirect.com/science/article/pii/S1001627909600123
  • 94. Papanicolaou AN (1997) The role of turbulence on the initiation of sediment motion. Dissertation, Virginia Polytechnic Institute, Blacksburg, Va
  • 95. Parker G (2008) Transport of gravel and sediment mixtures. In: Garcia MH (ed) Sedimentation engineering: processes, measurements, modelling, and practice. American Society of Civil Engineers, pp 165–251
  • 96. Perret M, Esmaeilpour M, Politano MS, Carrica PM (2013) Experimental study of a two-phase surface jet. Exp Fluids 54:1510. https://doi.org/10.1007/s00348-013-1510-x
  • 97. Perret E, Berni C, Camenen B (2020) How does the bed surface impact low-magnitude bedload transport rates over gravel-bed rivers? Earth Surf Process Landf 45:1181–1197. https://doi.org/10.1002/esp.4792
  • 98. Perry AE, Lim KL, Henbest SM (1987) An experimental study of the turbulence structure in smooth- and rough-wall boundary layers. J Fluid Mech 177:437–466. https://doi.org/10.1017/S0022112087001034
  • 99. Pretzlav KLG, Johnson JPL, Bradley DN (2020) Smartrock transport in a mountain stream: bedload hysteresis and changing thresholds of motion. Water Resour Res 56:e2020WR028150. https://doi.org/10.1029/2020WR028150
  • 100. Pretzlav KLG, Johnson JPL, Bradley DN (2021) Smartrock transport from seconds to seasons: shear stress controls on gravel diffusion inferred from hop and rest scaling. Geophys Res Lett 48:e2020GL091991. https://doi.org/10.1029/2020GL091991
  • 101. Reid I, Brayshaw AC, Frostick LE (1984) An electromagnetic device for automatic detection of bedload motion and its field applications. Sedimentology 31:269–276. https://doi.org/10.1111/j.1365-3091.1984.tb01963.x
  • 102. Rosenberg BJ, Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2013) Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers. J Fluid Mech 731:46–63. https://doi.org/10.1017/jfm.2013.359
  • 103. Ross SM (2004) Introduction to probability and statistics for engineers and scientists. Elsevier Academic Press, London
  • 104. Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11(3):447–459. https://doi.org/10.1017/S0022112061000640
  • 105. Schmeeckle MW, Nelson JM (2003) Direct numerical simulation of bedload transport using a local, dynamic boundary condition. Sedimentology 50:279–301. https://doi.org/10.1046/j.1365-3091.2003.00555.x
  • 106. Schmeeckle MW, Nelson JM, Schreve RL (2007) Forces on stationary particles in near-bed turbulent flows. J Geophys Res 112:F02003. https://doi.org/10.1029/2006JF000536
  • 107. Sekine M, Kikkawa H (1992) Mechanics of saltating grains. II J Hydraul Eng 118(4):536–558. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(536)
  • 108. Shih W, Diplas P (2018) A unified approach to bed load transport description over a wide range of flow conditions via the use of conditional data treatment. Water Resour Res 54:3490–3509. https://doi.org/10.1029/2017WR022373
  • 109. Shih W, Diplas P, Celik AO, Dancey CL (2017) Accounting for the role of turbulent flow on particle dislodgement via a coupled quadrant analysis of velocity and pressure sequences. Adv Water Resour 101:37–48. https://doi.org/10.1029/2017WR022373
  • 110. Singh A, Fienberg K, Jerolmack DJ, Marr J, Foufoula-Georgiou E (2009) Experimental evidence for statistical scaling and intermittency in sediment transport rates. J Geophys Res 114:F01025. https://doi.org/10.1029/2007JF000963
  • 111. Strom KB, Papanicolaou AN, Evangelopoulos N, Odeh M (2004) Microforms in gravel bed rivers: formation, disintegration, and effects on bedload transport. J Hydraul Eng 130(6):554–567. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:6(554)
  • 112. Sun Z, Donahue J (2000) Statistically derived bedload formula for any fraction of nonuniform sediment. J Hydraul Eng 126(2):105–111. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(105)
  • 113. Suszka L (1991) Modification of transport rate formula for steep channels. In: Armanini A, Di Silvio G (eds) Fluvial Hydraulics of Mountain Regions. Springer-Verlag, pp 59–70
  • 114. Tregnaghi M, Bottacin-Busolin A, Tait S, Marion A (2012) Stochastic determination of entrainment risk in uniformly sized sediment beds at low transport stages: 2. Experiments J Geophys Res 117:F04005. https://doi.org/10.1029/2011JF002135
  • 115. Tsakiris AG, Papanicolaou AN, Hajimirzaie SM, Buchholz JHJ (2014a) Influence of collective boulder array on the surrounding time-averaged and turbulent flow fields. J Mt Sci 11(6):1420–1428. https://doi.org/10.1007/s11629-014-3055-8
  • 116. Tsakiris AG, Papanicolaou AN, Lauth TJ (2014b) Signature of bedload particle transport mode in the acoustic signal of a geophone. J Hydraul Res 52(2):185–204. https://doi.org/10.1080/00221686.2013.876454
  • 117. Valyrakis M, Diplas P, Dancey CL, Greer K, Celik AO (2010) Role of instantaneous force magnitude and duration on particle entrainment. J Geophys Res 115:F02006. https://doi.org/10.1029/2008JF001247
  • 118. Valyrakis M, Diplas P, Dancey CL (2011) Entrainment of coarse grains in turbulent flows: an extreme value theory approach. Water Resour Res 47:W09512. https://doi.org/10.1029/2010WR010236
  • 119. van Radecke R, Shulz-DuBois EO (1988) Linear response of fluctuating forces to turbulent velocity components. In: Adrian RJ, Asanuma T, Durao DFG, Durst F, Whitelaw JH (eds) Applications of Laser Anemometry to Fluid Mechanics: 4th International Symposium. Springer, pp 23–44
  • 120. Voepel H, Schumer R, Hassan MA (2013) Sediment residence time distributions: theory and application from bed elevation measurements. J Geophys Res Earth Surf 118:2557–2567. https://doi.org/10.1002/jgrf.20151
  • 121. Vowinckel B, Jain R, Kempe T, Fröhlich J (2016) Entrainment of single particles in a turbulent open-channel flow: a numerical study. J Hydraul Res 54(2):158–171. https://doi.org/10.1080/00221686.2016.1140683
  • 122. Wilkerson G, Sharma S, Sapkota D (2019) Length for uniform flow development in a rough laboratory flume. J Hydraul Eng 145(1):06018018. https://doi.org/10.1061/J.H.(ASCE)HY.1943-7900.0001554
  • 123. Witz MJ (2015) Mechanics of particle entrainment in turbulent open-channel flows. Dissertation, University of Aberdeen.
  • 124. Wu F-C, Yang K-H (2004) A stochastic partial transport model for mixed-size sediment: application to assessment of fractional mobility. Water Resour Res 40:W04501. https://doi.org/10.1029/2003WR002256
  • 125. Wu Z, Singh A, Fu X, Wang G (2019) Transient anomalous diffusion and advective slowdown of bedload tracers by particle burial and exhumation. Water Resour Res 55(10):7964–7982. https://doi.org/10.1029/2019WR025527
  • 126. Wyssmann MA, Papanicolaou AN (2018) Lagrangian modeling of bedload movement via the impulse entrainment method. Proc. IAHR River Flow Conference, EDP Sciences, 05041, https://doi.org/10.1051/e3sconf/20184005041
  • 127. Yalin MS (1977) Mechanics of sediment transport, 2nd edn. Pergamon Press, New York, NY
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a77207b4-1eb7-46c0-8f22-8166862bc447
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.