PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS Studies of Thermal Decomposition for Poly(sodium acrylate)/Dextrin (PAANa/D) – New Binder BioCo3

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS studies have been conducted to determine the effect of the thermal decomposition conditions and structure of foundry binder BioCo3 in the form of a composition poly(sodium acrylate)/dextrin (PAANa/D) on the progress of degradation in terms of processes occurring in foundry sands in contact with liquid metal. TG-DTG-DSC curves of the composition allowed us to determine the temperature range in which they do not undergo degradation, by which they do not lose their binding properties. With temperature increasing, physical and chemical changes occur that are related to the evaporation of solvent water (20–110°C), followed by the release of constitution water, and finally intermolecular dehydration (110–230°C). In this temperature range, processes that are mainly reversible take place. Within a temperature range of 450–826°C, polymer chains are decomposed, including the decomposition of side chains. Within a temperature range of 399–663°C, polymer composition decomposition can be observed (FTIR, DRIFT), and gas products are generated from this destruction (Py-GC-MS).
Rocznik
Strony
27--32
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering
  • AGH University of Science and Technology, Faculty of Foundry Engineering
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering
  • AGH University of Science and Technology, Faculty of Foundry Engineering
  • AGH University of Science and Technology, Faculty of Foundry Engineering
Bibliografia
  • [1] Lewandowski J. L. (1995). Tworzywa na formy odlewnicze. Kraków: Akapit.
  • [2] Zhou X., Yang J., Su D. & Qu G. (2009). The high-temperature resistant mechanism of α-starch composite binder for foundry. Journal of Materials Processing Technology, 209(14), 5394–5398. doi:10.1016/j.jmatprotec.2009.04.010
  • [3] Fayomi O.S.I., Abdulwahab M. & Popoola A.P.I. (2014). Potentials of Elaeis guineensis and Pinus sylvestris as binders on foundry core strength. Journal of Scientific and Industrial Research, 73(3), 173–176. doi:10.5897/IJPS12.347
  • [4] Miguel R.E., Ippolito J.A., Leytem A.B., Porta A.A., Banda Noriega R.B. & Dungan R.S. (2012). Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries. Journal of Environmental Management, 110, 77–81. doi:10.1016/j.jenvman.2012.05.025
  • [5] Dungan R.S., Kukier U. & Lee B. (2006). Blending foundry sands with soil: Effect on dehydrogenase activity. Science of the Total Environment, 357(1–3), 221–230. doi:10.1016/j.scitotenv.2005.04.032
  • [6] Fox J.T., Cannon F.S., Brown N.R., Huang H. & Furness J.C. (2012). Comparison of a new, green foundry binder with conventional foundry binders. International Journal of Adhesion and Adhesives, 34, 38–45. doi:10.1016/j.ijadhadh.2011.11.011
  • [7] Grabowska B., Szucki M., Suchy J.S., Eichholz S. & Hodor K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery, 58(1), 39–44.
  • [8] Kubecki M., Holtzer M. & Żymankowska S. (2013). Investigations of the Temperature Influence on Formation of Compounds from the BTEX Group During the Thermal Decomposition of Furan Resin. Archives of Foundry Engineering, 13(2), 85–90.
  • [9] Bobrowski A., Holtzer M., Żymankowska-Kumon S. & Dańko R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX Group. Archives of Metallurgy and Materials, 60(1), 341–344. doi:10.1515/amm-2015-0056
  • [10] Grabowska B., Holtzer M., Dańko, R. Górny M., Bobrowski A. & Olejnik E. (2013). New BioCo binders containing biopolymers for foundry industry. Metalurgija, 52(1), 47–50.
  • [11] Grabowska B., Sitarz M., Olejnik E., Kaczmarska K. & Tyliszczak B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 151, 27–33. doi:10.1016/j.saa.2015.06.084
  • [12] Pielichowski J. & Pielichowski K. (1995). Application of thermal analysis for the investigation of polymer degradation processes. Journal of Thermal Analysis, 43, 505–508.
  • [13] Lattimer R.P. (2003). Pyrolysis mass spectrometry of acrylic acid polymers. Journal of Analytical and Applied Pyrolysis, 69(5), 3–14. doi:10.1016/S0165-2370(03)00080-9
  • [14] Kader M.A. & Bhowmick A.K. (2003). Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates. Polymer Degradation and Stability, 79(2), 283–295. doi:10.1016/S0141-3910(02)00292-6
  • [15] Lluch A.V., Felipe A.M., Greus A.R., Cadenato A., Ramis X., Salla J.M. & Morancho J.M. (2005). Thermal analysis characterization of the degradation of biodegradable starch blends in soil. Journal of Applied Polymer Science, 96(2), 358–371. doi:10.1002/app.21428
  • [16] Lawal O.S., Lechner M.D. & Kulicke W.M. (2008). The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source. Polymer Degradation and Stability, 93, 1520–1528. doi:10.1016/j.polymdegradstab.2008.05.010
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a76fa221-237e-48c5-b948-5c9a39fba2bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.