PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biocidal properties of copper nanoparticles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal nanoparticles (NPs) with antibacterial properties represent a promising alternative approach to antibiotics, whose overuse has led to the appearance of drug-resistant bacteria. This article addresses particularly copper (Cu) nanoparticles since Cu is a structural constituent of many enzymes in living microorganisms. In addition, Cu has a better antibacterial effect and minimal cost compared to silver. The properties of Cu nanoparticles are described here: antibactericide, toxicity mechanisms, oxidation, and copper oxide biocompatibility for medical applications. Along with the advantages of Cu nanoparticles, the nanotoxicity still remains to take into consideration such as in targetting different bacteria strains, bacteria’s resistance, the effect of size, the effect of NP chemical composition, the effect of oxidation, and the corona phenomenon effect. The methodology of Cu nanoparticles synthesis, related to the biocidal effect, is illustrated by some limitations and some breakthrough such as chitosan stabilizer (CS), laser ablation, plasma induction, and flow-levitation method (FL). Although Cu nanoparticles are beneficial for bacterial elimination, these nanoparticles are graded harmful to the human body and the environment because of their toxic effects. Thus, it requires further improvement and further investigation to create super antibacterial Cu nanoparticles, to develop some interesting research work around this subject, and to reveal some promising medical findings.
Rocznik
Strony
2--17
Opis fizyczny
Bibliogr. 198 poz., rys.
Twórcy
  • Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec, Canada H3C 3A7
autor
  • Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
  • Centre Intégré de Santé et de Services Sociaux de Lanaudière, 260 Lavaltrie South, Joliette, Québec, Canada
  • Département of STD and Dermatoses Laboratory Diagnostics, State Research Center of Dermatovenerology and Cosmetology, 3 Korolenko St., Moscow, Russia
  • Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec, Canada H3C 3A7
Bibliografia
  • [1] Tortella, G.R., Pieretti, J.C., Rubilar, O., Fernández-Baldo, M., Benavides-Mendoza, A., Diez, M.C., Seabra, A.B. (2021). Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Critical Reviews in Biotechnology, 1-19.
  • [2] Waris, A., Din, M., Ali, A., Ali, M., Afridi, S., Baset, A., Khan, A.U. (2020). A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorganic Chemistry Communications, 108369.
  • [3] Vaishnavi, A., Sasanka, K., Anjali, A.K. (2021). Comparative Evaluation of Antimicrobial Effects of Silver Nanoparticles with Antimicrobial Properties of Copper and Zinc. Annals of the Romanian Society for Cell Biology, 5915-5928.
  • [4] Letchumanan, D., Sok, S.P., Ibrahim, S., Nagoor, N.H., Arshad, N.M. (2021). Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules, 11(4), 564.
  • [5] Tortella, G., Rubilar, O., Fincheira, P., Pieretti, J.C., Duran, P., Lourenço, I.M., Seabra, A.B. (2021). Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics, 10(7), 783.
  • [6] Sacoto-Figueroa, F.K., Bello-Toledo, H.M., González-Rocha, G.E., Machuca, L.L., Lima, C.A., Meléndrez-Castro, M., Sánchez- Sanhueza, G.A. (2021). Molecular characterization and antibacterial activity of oral antibiotics and copper nanoparticles against endodontic pathogens commonly related to health care-associated infections. Clinical Oral Investigations, 1-13.
  • [7] Amaro, F., Morón, Á., Díaz, S., Martín-González, A.,Gutiérrez, J.C. (2021). Metallic Nanoparticles—Friends or Foes in the Battle against Antibiotic-Resistant Bacteria?. Microorganisms 2021, 9, 364.
  • [8] Staroń, A., Długosz, O. (2021). Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. Journal of Environmental Science and Health, Part A, 1-14.
  • [9] Yang, X., Chung, E., Johnston, I., Ren, G., Cheong, Y.K. (2021). Exploitation of antimicrobial nanoparticles and their applications in biomedical engineering. Applied Sciences, 11(10), 4520.
  • [10] Donlan, R.M., Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 15(2), 167–93. doi:10.1128/CMR.15.2.167- 193.2002
  • [11] Roco, M.C. (2007). National Nanotechnology Initiative - Past, Present, Future. In Handbook on Nanoscience, Engineering and Technology (2th ed., p. PREPRINT). Taylor and Francis. Retrieved from http://www.ecole-doctorale-cli.org/ecole-doctorale/IMG/pdf/ NNI_Past_Present_Future.pdf
  • [12] Christian, P., Von DerKammer, F., Baalousha, M., Hofmann, T. (2008). Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17(5), 326–343. doi:10.1007/s10646-008-0213-1
  • [13] Farré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry, 393(1), 81–95. doi:10.1007/s00216-008-2458-1
  • [14] Yule, A.M., Barker, I.K., Austin, J.W., Moccia, R.D. (2006). Toxicity of Clostridium botulinum type E neurotoxin to Great Lakes fish: implications for avian botulism. Journal of Wildlife Diseases, 42(3), 479–493. doi:10.7589/0090-3558-42.3.479
  • [15] Zhang, Y, BA Keoneman, Y Chen, P Westerhoff, G Capco, J.C. (2007). Fate, transport, and toxicity of nanomaterials in drinking water. NSTI-Nanotech, 2, 678–680.
  • [16] Neal, A.L. (2008). What can be inferred from bacterium– nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology, 17(5), 362–371. doi:10.1007/s10646-008-0217-x
  • [17] Jiang, W., Mashayekhi, H., Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157(5), 1619–1625. doi:10.1016/j. envpol.2008.12.025
  • [18] Kollef, M.H., Torres, A., Shorr, A.F., Martin-Loeches, I., Micek, S.T. (2021). Nosocomial Infection. Critical care medicine, 49(2), 169-187.
  • [19] Tietjen, L., Bossemeyer, D., McIntosh, N. (2003). Infection Prevention Guidelines for Healthcare Facilities with Limited Resources. Prevention, 372(9642), 1–75. Retrieved from http://www. reproline.jhu.edu/english/4morerh/4ip/IP_manual/ipmanual.htm
  • [20] Tikhomirov, E. (1987). WHO programme for the control of hospital infections. Chemioterapia : international journal of the Mediterranean Society of Chemotherapy, 6(3), 148–51.
  • [21] Antimicrobial resistance surveillance in Europe 2009. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). (2010). European Centre for Disease and Prevention. doi:10.2900/35994
  • [22] Darouiche, R.O. (2007). Antimicrobial coating of devices for prevention of infection: Principles and protection. International Journal of Artificial Organs, 30(9), 820–7. doi:10.1177/039139880703000912
  • [23] Qiu, Y., Zhang, N., An, Y.H., Wen, X. (2007). Biomaterial strategies to reduce implant-associated infections. International Journal of Artificial Organs, 30(9), 828–41. doi:10.1177/039139880703000913
  • [24] Escobar, A., Muzzio, N., Moya, S.E. (2021). Antibacterial layerby- layer coatings for medical implants. Pharmaceutics, 13(1), 16.
  • [25] Zare, M., Zare, M., Butler, J.A., Ramakrishna, S. (2021). Nanoscience-Led Antimicrobial Surface Engineering to Prevent Infections. ACS Applied Nano Materials.
  • [26] Mohandas, A., Luo, H., Ramakrishna, S. (2021). An Overview on Atomization and Its Drug Delivery and Biomedical Applications. Applied Sciences, 11(11), 5173.
  • [27] Yang, X., Guo, R., Xie, B., Lai, Q., Xu, J., Hu, N., Zhang, B. (2021). Drug resistance of pathogens causing nosocomial infection in orthopedics from 2012 to 2017: a 6-year retrospective study. Journal of Orthopaedic Surgery and Research, 16(1), 1-8.
  • [28] Gordon, R.J., Lowy, F.D. (2008). Pathogenesis of Methicillin- Resistant Staphylococcus aureus Infection. Clinical Infectious Diseases, 46(Suppl 5), S350-9. doi:10.1086/533591
  • [29] Lowy, F.D. (1998). Staphylococcus aureus infections. The New England journal of medicine, 339(8), 520–32. doi:10.1056/ NEJM199808203390806
  • [30] Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., Fridkin, S.K. (2014). Multistate Point- Prevalence Survey of Health Care–Associated Infections. New England Journal of Medicine, 370(13), 1198–1208. doi:10.1056/ NEJMoa1306801
  • [31] Hetrick, E.M., Schoenfisch, M.H. (2006). Reducing implantrelated infections: Active release strategies. Chemical Society Reviews, 35(9), 780. doi:10.1039/b515219b
  • [32] Gristina, A.G. (1987). Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science, 237(4822), 1588–95. doi:10.1126/science.3629258
  • [33] Hall-Stoodley, L., Costerton, J.W., Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95–108. doi:10.1038/ nrmicro821
  • [34] Hemmati, F., Rezaee, M.A., Ebrahimzadeh, S., Yousefi, L., Nouri, R., Kafil, H.S., Gholizadeh, P. (2021). Novel Strategies to Combat Bacterial Biofilms. Molecular Biotechnology, 1-18.
  • [35] Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Kamil, M.A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1), 7–11. doi:10.1016/j.jcma.2017.07.012
  • [36] Simões, L.C., Lemos, M., Pereira, A.M., Abreu, A.C., Saavedra, M.J., Simões, M. (2011). Persister cells in a biofilm treated with a biocide. Biofouling, 27(4), 403–411. doi:10.1080/08927014.2011. 579599
  • [37] Ramasamy, M., Lee, J. (2016). Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices. BioMed Research International, 2016, 1–17. doi:10.1155/2016/1851242
  • [38] Simões, M., Simões, L.C., Machado, I., Pereira, M. O., Vieira, M.J. (2006). Control of flow-generated biofilms with surfactants: Evidence of resistance and recovery. Food and Bioproducts Processing, 84(4), 338–345. doi:10.1205/fbp06022
  • [39] Bryers, J.D., Ratner, B.D. (2004). Bioinspired Implant Materials Befuddle Bacteria. ASM News, 5, 232–237.
  • [40] Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., Michiels, J. (2008). Living on a surface: swarming and biofilm formation. Trends in Microbiology, 16(10), 496–506. doi:10.1016/j.tim.2008.07.004
  • [41] Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greenberg, E.P. (1998). The involvement of cellto- cell signals in the development of a bacterial biofilm. Science, 280(5361), 295–8. doi:10.1126/science.280.5361.295
  • [42] Kamaeva, A.A., Vasilchenko, A.S., Deryabin, D.G. (2014). Atomic force microscopy reveals a morphological differentiation of Chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone. PLoS ONE, 9(8). doi:10.1371/journal.pone.0103741
  • [43] Sutherland, I.W. (2001). The biofilm matrix - An immobilized but dynamic microbial environment. Trends in Microbiology, 9(5), 222–7. doi:10.1016/S0966-842X(01)02012-1
  • [44] Mah, T.F.C., O’Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34–9. doi:10.1016/S0966-842X(00)01913-2
  • [45] Simões, M., Pereira, M.O., Vieira, M.J. (2005). Effect of mechanical stress on biofilms challenged by different chemicals. Water Research, 39(20), 5142–52. doi:10.1016/j. watres.2005.09.028
  • [46] Dayan, J., Mireles, L.-K., Massicotte, R., Dagher, F., Yahia, L. (2016). Effect of disinfectants on wettability and surface tension of metallic and polymeric surfaces found in hospitals. Clin Med Invest, 1(2), 48–53. doi:10.15761/CMI.1000110
  • [47] Mireles, L.-K., Dayan, J., Massicotte, R., Dagher, F., Yahia, H., Mireles, K. (2016). Clinical and Medical Investigations Interactions of active compounds of disinfectants on metallic and polymeric hospital surfaces. Clin Med Invest, 1(2), 39–47. doi:10.15761/CMI.1000109
  • [48] Thouvenin, M., Langlois, V., Briandet, R., Langlois, J.Y., Guerin, P.H., Peron, J.J., Vallee-Rehel, K. (2003). Study of erodable paint properties involved in antifouling activity. Biofouling, 19(3), 177–86. doi:10.1080/0892701021000058034
  • [49] Rosmaninho, R., Santos, O., Nylander, T., Paulsson, M., Beuf, M., Benezech, T., Melo, L.F. (2007). Modified stainless steel surfaces targeted to reduce fouling - Evaluation of fouling by milk components. Journal of Food Engineering, 80(4), 1176–87. doi:10.1016/j.jfoodeng.2006.09.008
  • [50] Hashimoto, H. (2001). Evaluation of the anti-biofilm effect of a new anti-bacterial silver citrate/lecithin coating in an invitro experimental system using a modified Robbins device. Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases, 75(8), 678–85. Retrieved from http://www. ncbi.nlm.nih.gov/pubmed/11558130
  • [51] Besemer, K., Singer, G., Hödl, I., Battin, T.J. (2009). Bacterial community composition of stream biofilms in spatially variable-flow environments. Applied and Environmental Microbiology, 75(22), 7189–7195. doi:10.1128/AEM.01284-09
  • [52] Tortora, G.J., Funke, B.R., Case, C.L. (2004). Microbiology : an introduction (8th ed.). San Francisco, CA USA: Benjamin Cummings.
  • [53] Zhang, T., Cogan, N.G., Wang, Q. (2008). Phase Field Models for Biofilms. I. Theory and One-Dimensional Simulations. SIAM Journal on Applied Mathematics, 69(3), 641–669. doi:10.1137/070691966
  • [54] Costerton, J.W., Stewart, P.S., Greenberg, E.P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–22. doi:10.1126/science.284.5418.1318
  • [55] Fang, H.H.P., Xu, L.C., Chan, K.Y. (2002). Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Research, 36(19), 4709–16. doi:10.1016/S0043-1354(02)00207-5
  • [56] Zhang, T., Fang, H.H.P. (2001). Phylogenetic diversity of a SRB-rich marine biofilm. Applied Microbiology and Biotechnology, 57(3), 437–40. doi:10.1007/s002530100770
  • [57] Chakraborty, S.P., Sahu, S.K., Mahapatra, S.K., Santra, S., Bal, M., Roy, S., Pramanik, P. (2010). Nanoconjugated vancomycin: New opportunities for the development of anti-VRSA agents. Nanotechnology, 21(10), 105103. doi:10.1088/0957- 4484/21/10/105103
  • [58] Sinha, N., Yeow, J.T.W. (2005). Carbon nanotubes for biomedical applications. IEEE transactions on nanobioscience, 4(2), 180–95. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/16117026
  • [59] Klevens, R.M., Morrison, M.A., Nadle, J., Petit, S., Gershman, K., Ray, S., Fridkin, S.K. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical Association, 298(15), 1763–71. doi:10.1001/ jama.298.15.1763
  • [60] Weigel, L.M., Clewell, D.B., Gill, S.R., Clark, N.C., McDougal, L.K., Flannagan, S.E., Tenover, F.C. (2003). Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus. Science, 302(5650), 1569–1571. doi:10.1126/science.1090956
  • [61] Falagas, M.E., Bliziotis, I.A., Kasiakou, S.K., Samonis, G., Athanassopoulou, P., Michalopoulos, A. (2005). Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. BMC Infectious Diseases, 5, 24. doi:10.1186/1471-2334-5-24
  • [62] Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C., Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(213902), 2139021–3. doi:10.1063/1.2742324
  • [63] M.A. Timofeev, M.V. Protopopova, A.V. Kolesnichenko. Nanomaterials toxicity: 15-year research. Ross. Nanotekh. 3(3–4), 54–61 (2008).
  • [64] Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 158(1), 41–47. doi:10.1016/j. envpol.2009.08.017
  • [65] Esteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharromn, C., Moya, J.S. (2009). Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20(50), 505701. doi:10.1088/0957- 4484/20/50/505701
  • [66] Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G. (2006). Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chemical Reviews, 106(6), 1995–2044. doi:10.1021/cr040410w
  • [67] Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255–5262. doi:10.1021/cm0505244
  • [68] Rakhmetova, A.A., Alekseeva, T.P., Bogoslovskaya, O.A., Leipunskii, I.O., Ol’khovskaya, I.P., Zhigach, A.N., Glushchenko, N.N. (2010). Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nanotechnologies in Russia, 5(3–4), 271–6. doi:10.1134/s199507801003016x
  • [69] Esteban-Cubillo, A., Pecharromán, C., Aguilar, E., Santarén, J., Moya, J.S. (2006). Antibacterial activity of copper monodispersed nanoparticles into sepiolite. Journal of Materials Science, 41, 5208–12. doi:10.1007/s10853-006-0432-x
  • [70] Qi, L., Xu, Z., Jiang, X., Hu, C., Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693–2700. doi:10.1016/j.carres.2004.09.007
  • [71] Yoon, K.Y., Hoon Byeon, J., Park, J.H., Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373(2–3), 572–5. doi:10.1016/j.scitotenv.2006.11.007
  • [72] Du, W.-L.L., Niu, S.-S.S., Xu, Y.-L.L., Xu, Z.-R.R., Fan, C.-L.L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75(3), 385–389. doi:10.1016/j.carbpol.2008.07.039
  • [73] Trapalis, C.C., Kokkoris, M., Perdikakis, G., Kordas, G. (2003). Study of antibacterial composite Cu/SiO2 thin coatings. Journal of Sol-Gel Science and Technology, 26(1–3), 1213–1218. doi:10.1023/A:1020720504942
  • [74] Deryabin, D.G., Efremova, L.V., Karimov, I.F., Manukhov, I.V., Gnuchikh, E.Y., Miroshnikov, S.A. (2016). Comparative sensitivity of the luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis strains to toxic effects of carbon-based nanomaterials and metal nanoparticles. Microbiology, 85(2), 198–206. doi:10.1134/S0026261716020053
  • [75] Ren, G., Hu, D., Cheng, E.W.C., Vargas-Reus, M.A., Reip, P., Allaker, R.P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–90. doi:10.1016/j.ijantimicag.2008.12.004
  • [76] Baker, J., Sitthisak, S., Sengupta, M., Johnson, M., Jayaswal, R.K., Morrissey, J.A. (2010). Copper stress induces a global stress response in staphylococcus aureus and represses sae and agr expression and biofilm formations. Applied and Environmental Microbiology, 76(1), 150–160. doi:10.1128/AEM.02268-09
  • [77] Murthy, S., Bali, G., Sarangi, S.K. (2011). Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. African Journal of Biotechnology, 10(71). doi:10.5897/ajb11.1645
  • [78] Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–716. doi:10.1016/j. actbio.2007.11.006
  • [79] Stohs, S.J., Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321–36. doi:10.1016/0891-5849(94)00159-H
  • [80] Verhaegh, G.W., Richard, M.J., Hainaut, P. (1997). Regulation of p53 by metal ions and by antioxidants: dithiocarbamate downregulates p53 DNA-binding activity by increasing the intracellular level of copper. Molecular and cellular biology, 17(10), 5699–706. doi:10.1128/mcb.17.10.5699
  • [81] Midander, K., Cronholm, P., Karlsson, H.L., Elihn, K., Möller, L., Leygraf, C., Wallinder, I.O. (2009). Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(ll) oxide particles: A cross-disciplinary study. Small, 5(3), 389–399. doi:10.1002/smll.200801220
  • [82] Jose, G.P., Santra, S., Mandal, S.K., Sengupta, T.K. (2011). Singlet oxygen mediated DNA degradation by copper nanoparticles: Potential towards cytotoxic effect on cancer cells. Journal of Nanobiotechnology, 9, 9. doi:10.1186/1477-3155-9-9
  • [83] Li, F., Lei, C., Shen, Q., Li, L., Wang, M., Guo, M., Yao, S. (2013). Analysis of copper nanoparticles toxicity based on a stressresponsive bacterial biosensor array. Nanoscale, 5(2), 653–662. doi:10.1039/c2nr32156d
  • [84] Halliwell, B., Gutteridge, J.M. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. The Biochemical journal, 219(1), 1–14. Retrieved from http://www.ncbi.nlm.nih. gov/pubmed/6326753%0Ahttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC1153442
  • [85] Halliwell, B., Gutteridge, J.M.C. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Methods in Enzymology, 186(C), 1–85. doi:10.1016/0076-6879(90)86093-B
  • [86] Lee, S.M., Grass, G., Rensing, C., Barrett, S.R., Yates, C.J.D., Stoyanov, J.V., Brown, N.L. (2002). The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochemical and Biophysical Research Communications, 295(3), 616–620. doi:10.1016/S0006-291X(02)00726-X
  • [87] Wilks, S.A., Michels, H., Keevil, C.W. (2005). The survival of Escherichia coli O157 on a range of metal surfaces. International Journal of Food Microbiology, 105(3), 445–454. doi:10.1016/j. ijfoodmicro.2005.04.021
  • [88] Huffman, D.L., O’Halloran, T.V. (2001). Function, Structure, and Mechanism of Intracellular Copper Trafficking Proteins. Annual Review of Biochemistry, 70(1), 677–701. doi:10.1146/annurev. biochem.70.1.677
  • [89] Thiele, D.J. (1988). ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Molecular and cellular biology, 8(7), 2745–52. doi:10.1128/mcb.8.7.2745
  • [90] Wei, Y., Chen, S., Kowalczyk, B., Huda, S., Gray, T.P., Grzybowski, B.A. (2010). Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. Journal of Physical Chemistry C, 114(37), 15612–15616. doi:10.1021/jp1055683
  • [91] Monteiro-Riviere, N.A., Inman, A.O., Zhang, L.W. (2009). Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicology and Applied Pharmacology, 234(2), 222–235. doi:10.1016/j. taap.2008.09.030
  • [92] Petersen, E.J., Nelson, B.C. (2010). Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Analytical and Bioanalytical Chemistry, 398(2), 613–650. doi:10.1007/s00216-010-3881-7
  • [93] Yu, M., Mo, Y., Wan, R., Chien, S., Zhang, X., Zhang, Q. (2010). Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles. Toxicology letters, 195(1), 82–9. doi:10.1016/j.toxlet.2010.02.010
  • [94] Karlsson, H.L., Cronholm, P., Gustafsson, J., Möller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726–1732. doi:10.1021/tx800064j
  • [95] Kasemets, K., Ivask, A., Dubourguier, H.C., Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23(6), 1116–1122. doi:10.1016/j.tiv.2009.05.015
  • [96] Fahmy, B., Cormier, S.A. (2009). Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro, 23(7), 1365–71. doi:10.1016/j.tiv.2009.08.005
  • [97] Li, J., Quabius, E.S., Wendelaar Bonga, S.E., Flik, G., Lock, R.A.C. (1998). Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambique tilapia (Oreochromis mossambicus). Aquatic Toxicology, 43(1), 1–11. doi:10.1016/S0166-445X(98)00047-2
  • [98] Limbach, L.K., Wick, P., Manser, P., Grass, R.N., Bruinink, A., Stark, W.J. (2007). Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environmental science technology, 41(11), 4158–63. doi:10.1021/es062629t
  • [99] Rushton, E.K., Jiang, J., Leonard, S.S., Eberly, S., Castranova, V., Biswas, P., Oberdorster, G. (2010). Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. Journal of Toxicology and Environmental Health - Part A: Current Issues, 73(5–6), 445–461. doi:10.1080/15287390903489422
  • [100] Vanwinkle, B.A., DeMesy Bentley, K.L., Malecki, J.M., Gunter, K.K., Evans, I.M., Elder, A., Gunter, T.E. (2009). Nanoparticle (NP) uptake by type i alveolar epithelial cells and their oxidant stress response. Nanotoxicology, 3(4), 307–318. doi:10.3109/17435390903121949
  • [101] Williams, D. F. ( 2008 ) . On t he mechanisms o f biocompatibility. Biomaterials, 29(20), 2941–2953. doi:10.1016/j. biomaterials.2008.04.023
  • [102] Olivares, M., Uauy, R. (1996). Copper as an essential nutrient. American Journal of Clinical Nutrition, 63(5), 791S-796S. doi:10.1093/ajcn/63.5.791
  • [103] Chambers, A., Krewski, D., Birkett, N., Plunkett, L., Hertzberg, R., Danzeisen, R., Slob, W. (2010). An exposure-response curve for copper excess and deficiency. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 13(7–8), 546–578. doi:10.1080/10937404.2010.538657
  • [104] Stern, B.R., Solioz, M., Krewski, D., Aggett, P., Aw, T.C., Baker, S., Starr, T. (2007). Copper and human health: Biochemistry, genetics, and strategies for modeling dose-response relationships. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 10(3), 157–222. doi:10.1080/10937400600755911
  • [105] Failla, M.L. (2003). Trace Elements and Host Defense: Recent Advances and Continuing Challenges. The Journal of Nutrition, 133(5), 1443S-1447S. doi:10.1093/jn/133.5.1443s
  • [106] Tapiero, H., Townsend, D.M., Tew, K.D. (2003). Trace elements in human physiology and pathology. Copper. Biomedicine and Pharmacotherapy, 57(9), 386–398. doi:10.1016/S0753- 3322(03)00012-X
  • [107] Galhardi, C.M., Diniz, Y.S., Rodrigues, H.G., Faine, L.A., Burneiko, B.C., Ribas, B.O., Novelli, E.L.B. (2005). Beneficial effects of dietary copper supplementation on serum lipids and antioxidant defenses in rats. Annals of Nutrition and Metabolism, 49(5), 283–288. doi:10.1159/000087294
  • [108] Zietz, B.P., Dieter, H.H., Lakomek, M., Schneider, H., Keßler- Gaedtke, B., Dunkelberg, H. (2003). Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Science of the Total Environment, 302(1–3), 127–144. doi:10.1016/S0048-9697(02)00399-6
  • [109] Galhardi, C.M., Diniz, Y.S., Faine, L.A., Rodrigues, H.G., Burneiko, R.C.M., Ribas, B.O., Novelli, E.L.B. (2004). Toxicity of copper intake: Lipid profile, oxidative stress and susceptibility to renal dysfunction. Food and Chemical Toxicology, 42(12), 2053–2060. doi:10.1016/j.fct.2004.07.020
  • [110] Yokohira, M., Hashimoto, N., Yamakawa, K., Suzuki, S., Saoo, K., Kuno, T., Imaida, K. (2009). Lung Carcinogenic Bioassay of CuO and TiO2 Nanoparticles with Intratracheal Instillation Using F344 Male Rats. Journal of Toxicologic Pathology, 22(1), 71–78. doi:10.1293/tox.22.71
  • [111] Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109–120. doi:10.1016/j. toxlet.2005.10.003
  • [112] França, R., Mbeh, D.A., Samani, T.D., LeTien, C., Mateescu, M.A., Yahia, L., Sacher, E. (2013). The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 101(8), 1444–55. doi:10.1002/jbm.b.32964
  • [113] Suttle, N.F., Price, J. (1976). The potential toxicity of copperrich animal excreta to sheep. Animal Science, 23(2), 233–241. doi:10.1017/S0003356100031317
  • [114] Lutsenko, S., Barnes, N.L., Bartee, M.Y., Dmitriev, O.Y. (2007). Function and Regulation of Human Copper-Transporting ATPases. Physiological Reviews, 87(3), 1011–1046. doi:10.1152/ physrev.00004.2006
  • [115] Hajipour, M.J., Fromm, K.M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I.R., de, Rojo, T., Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. doi:10.1016/j.tibtech.2012.06.004
  • [116] Silhavy, T.J., Kahne, D., Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor perspectives in biology, 2(5), a000414. doi:10.1101/cshperspect.a000414
  • [117] Chatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., Basu, T. (2012). A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology, 23(8), 1–11. doi:10.1088/0957-4484/23/8/085103
  • [118] Theivasanthi, T., Alagar, M. (2011). Studies of Copper Nanoparticles Effects on Micro-organisms. Retrieved from arxiv:1110.1372v1
  • [119] Qiu, Z., Yu, Y., Chen, Z., Jin, M., Yang, D., Zhao, Z., Li, J.-W. (2012). Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proceedings of the National Academy of Sciences, 109(13), 4944–4949. doi:10.1073/pnas.1107254109
  • [120] Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? Journal of Antimicrobial Chemotherapy, 59(4), 587–590. doi:10.1093/jac/dkm006
  • [121] Borkow, G., Gabbay, J. (2005). Copper as a Biocidal Tool. Current Medicinal Chemistry, 12(18), 2163–2175. doi:10.2174/0929867054637617
  • [122] Harrison, J.J., Ceri, H., Stremick, C.A., Turner, R.J. (2004). Biofilm susceptibility to metal toxicity. Environmental Microbiology, 6(12), 1220–1227. doi:10.1111/j.1462-2920.2004.00656.x
  • [123] Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–53. doi:10.1088/0957-4484/16/10/059
  • [124] Padmavathy, N., Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and technology of advanced materials, 9(3), 035004. doi:10.1088/1468- 6996/9/3/035004
  • [125] Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535. doi:10.2147/ IJN.S29020
  • [126] Aruoja, V., Dubourguier, H.C., Kasemets, K., Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(1), 1461–8. doi:10.1016/j.scitotenv.2008.10.053
  • [127] Fang, J.L., Stingley, R.L., Beland, F.A., Harrouk, W., Lumpkins, D.L., Howard, P. (2010). Occurrence, efficacy, metabolism, and toxicity of triclosan. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 28(3), 147–71. doi:10.1080/10590501.2010.504978
  • [128] Deryabin, D.G., Aleshina, E.S., Vasilchenko, A.S., Deryabina, T.D., Efremova, L.V., Karimov, I.F., Korolevskaya, L.B. (2013). Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnologies in Russia, 8(5–6), 402–408. doi:10.1134/s1995078013030063
  • [129] Jia, H., Hou, W., Wei, L., Xu, B., Liu, X. (2008). The structures and antibacterial properties of nano-SiO2 supported silver/zincsilver materials. Dental Materials, 24(2), 244–249. doi:10.1016/j. dental.2007.04.015
  • [130] Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), 1308–1316. doi:10.1016/j.chemosphere.2007.11.047
  • [131] Babushkina, I.V., Borodulin, V.B., Korshunov, G.V., Puchinjan, D.M. (2010). Comparative study of antibacterial action of iron and copper nanoparticles on clinical Staphylococcus aureus strains. Saratov Journal of Medical Scientific Research, 6(3), 11–4.
  • [132] Wang, Z., Li, N., Zhao, J., White, J.C., Qu, P., Xing, B. (2012). CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity. Chemical Research in Toxicology, 25(7), 1512–1521. doi:10.1021/tx3002093
  • [133] Usman, M., Ibrahim, N., Shameli, K., Zainuddin, N., Yunus, W., Usman, M.S., Yunus, W.M.Z.W. (2012). Copper Nanoparticles Mediated by Chitosan: Synthesis and Characterization via Chemical Methods. Molecules, 17(12), 14928–14936. doi:10.3390/ molecules171214928
  • [134] Park, B.K., Jeong, S., Kim, D., Moon, J., Lim, S., Kim, J.S. (2007). Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 311(2), 417–424. doi:10.1016/j.jcis.2007.03.039
  • [135] Tang, X.F., Yang, Z.G., Wang, W.J. (2010). A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 360(1–3), 99–104. doi:10.1016/j.colsurfa.2010.02.011
  • [136] Kim, Y.-S.S., Kim, K.-K.K., Shin, S.-M.S., Park, S.-M.M., Hah, S.-S.S. (2012). Comparative toxicity studies of ultra-pure Ag, Au, Co, and Cu nanoparticles generated by laser ablation in biocompatible aqueous solution. Bulletin of the Korean Chemical Society, 33(10), 3265–3268. doi:10.5012/bkcs.2012.33.10.3265
  • [137] Midelet, G., Carpentier, B. (2004). Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food. Journal of Applied Microbiology, 97(2), 262–70. doi:10.1111/j.1365-2672.2004.02296.x
  • [138] Hamer, D.H., Thiele, D.J., Lemontt, J.E. (1985). Function and autoregulation of yeast copperthionein. Science, 228(4700), 685–690. doi:10.1126/science.3887570
  • [139] Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720. doi:10.1063/1.1341218
  • [140] Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., Barber, D.S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science and Technology, 41(23), 8178–8186. doi:10.1021/es071235e
  • [141] Wang, Y., Chen, M., Zhou, F., Ma, E. (2002). High tensile ductility in a nanostructured metal. Nature, 419(6910), 912–915. doi:10.1038/nature01133
  • [142] Guduru, R.K., Murty, K.L., Youssef, K.M., Scattergood, R.O., Koch, C.C. (2007). Mechanical behavior of nanocrystalline copper. Materials Science and Engineering A, 463(1–2), 14–21. doi:10.1016/j.msea.2006.07.165
  • [143] Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J. (2007). A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry, 363(1), 143–150. doi:10.1016/j. ab.2007.01.003
  • [144] Bali, R., Razak, N., Lumb, A., Harris, A.T. (2006). The synthesis of metallic nanoparticles inside live plants. In Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology, ICONN (pp. 224–227). IEEE. doi:10.1109/ ICONN.2006.340592
  • [145] Jana, N.R., Wang, Z.L., Sau, T.K., Pal, T. (2000). Seedmediated growth method to prepare cubic copper nanoparticles. Current Science, 79(9), 1367–1370.
  • [146] Panigrahi, S., Kundu, S., Ghosh, S.K., Nath, S., Praharaj, S., Basu, S., Pal, T. (2006). Selective one-pot synthesis of copper nanorods under surfactantless condition. Polyhedron, 25(5), 1263–1269. doi:10.1016/j.poly.2005.09.006
  • [147] Mott, D., Galkowski, J., Wang, L., Luo, J., Zhong, C.J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740–5745. doi:10.1021/la0635092
  • [148] Kapoor, S., Mukherjee, T. (2003). Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone). Chemical Physics Letters, 370(1–2), 83–87. doi:10.1016/S0009-2614(03)00073-3
  • [149] Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Tang, S.H. (1997). Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles. Langmuir, 13(2), 172–175. doi:10.1021/LA9605495
  • [150] Liu, C.M., Guo, L., Xu, H.B., Wu, Z.Y., Weber, J. (2003). Seed-mediated growth and properties of copper nanoparticles, nanoparticle 1D arrays and nanorods. Microelectronic Engineering, 66(1–4), 107–114. doi:10.1016/S0167-9317(03)00033-9
  • [151] Zhou, R., Wu, X., Hao, X., Zhou, F., Li, H., Rao, W. (2008). Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 266(4), 599–603. doi:10.1016/j.nimb.2007.11.040
  • [152] Lisiecki, I., Pileni, M.P. (1993). Synthesis of Copper Metallic Clusters Using Reverse Micelles as Microreactors. Journal of the American Chemical Society, 115(10), 3887–3896. doi:10.1021/ ja00063a006
  • [153] Tanori, J., Pileni, M.P. (1997). Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template. Langmuir, 13(4), 639–646. doi:10.1021/la9606097
  • [154] Wu, S.H., Chen, D.H. (2004). Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of Colloid and Interface Science, 273(1), 165–169. doi:10.1016/j.jcis.2004.01.071
  • [155] Waris, A., Din, M., Ali, A., Ali, M., Afridi, S., Baset, A., Khan, A.U. (2021). A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorgan. Chem. Commun, 123, 1387-7003.
  • [156] Umer, A., Naveed, S., Ramzan, N., Rafique, M.S. (2012). Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 07(05), 1230005. doi:10.1142/ s1793292012300058
  • [157] Chang, S.J., Tung, C.A., Chen, B.W., Chou, Y.C., Li, C.C. (2013). Synthesis of non-oxidative copper nanoparticles. RSC Advances, 3(46), 24005–24008. doi:10.1039/c3ra44768e
  • [158] Kim, K.K., Kim, D., Kim, S.K., Park, S.M., Song, J.K. (2011). Formation of ZnO nanoparticles by laser ablation in neat water. Chemical Physics Letters, 511(1–3), 116–120. doi:10.1016/j. cplett.2011.06.017
  • [159] Liang, C., Shimizu, Y., Sasaki, T., Koshizaki, N. (2003). Synthesis of Ultrafine SnO2 - x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium. The Journal of Physical Chemistry B, 107(35), 9220–9225. doi:10.1021/jp0347466
  • [160] Sibbald, M.S., Chumanov, G., Cotton, T.M. (1996). Reduction of Cytochrome c by Halide-Modified, Laser-Ablated Silver Colloids. The Journal of Physical Chemistry, 100(11), 4672–4678. doi:10.1021/jp953248x
  • [161] Barcikowski, S., Hahn, A., Guggenheim, M., Reimers, K., Ostendorf, A. (2010). Biocompatibility of nanoactuators: Stem cell growth on laser-generated nickel-titanium shape memory alloy nanoparticles. Journal of Nanoparticle Research, 12(5), 1733–1742. doi:10.1007/s11051-009-9834-4
  • [162] Kazakevich, P.V., Simakin, A.V., Voronov, V.V., Shafeev, G.A. (2006). Laser induced synthesis of nanoparticles in liquids. Applied Surface Science, 252(13 SPEC. ISS.), 4373–4380. doi:10.1016/j. apsusc.2005.06.059
  • [163] Kazakevich, P.V, Voronov, V.V, Simakin, A.V, Shafeev, G.A. (2004). Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electronics, 34(10), 951–956. doi:10.1070/qe2004v034n10abeh002756
  • [164] Suzuki, K., Tanaka, N., Ando, A., Takagi, H. (2012). Sizeselected copper oxide nanoparticles synthesized by laser ablation. Journal of Nanoparticle Research, 14(5), 863. doi:10.1007/s11051- 012-0863-z
  • [165] Nath, A., Khare, A. (2011). Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids. Journal of Applied Physics, 110(4). doi:10.1063/1.3626463
  • [166] Shi, M., Kwon, H.S., Peng, Z., Elder, A., Yang, H. (2012). Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano, 6(3), 2157–2164. doi:10.1021/nn300445d
  • [167] Guo, J., Fan, X., Dolbec, R., Xue, S., Jurewicz, J., Boulos, M. (2010). Development of nanopowder synthesis using induction plasma. Plasma Science and Technology, 12(2). doi:10.1088/1009- 0630/12/2/12
  • [168] Bayade, G., Talantikit, M., Mireles, L.K., Yahia, L. (n.d.). A correlative study of physico-chemical surface properties and bactericidal effect of copper and copper oxide nanoparticles synthesized by induction plasma. Journal of Nanotechnology, submitted.
  • [169] Zinn, S., Semiatin, L. (1988). Element of induction heating: Design, Control, and Applications. ASM International. ASM International. doi:10.1361/eoih1988p001
  • [170] Li, C.M., Lei, H., Tang, Y.J., Luo, J.S., Liu, W., Chen, Z.M. (2004). Production of copper nanoparticles by the flow-levitation method. Nanotechnology, 15(12), 1866–1869. doi:10.1088/0957- 4484/15/12/031
  • [171] Kermanpur, A., Rizi, B.N., Vaghayenegar, M., Yazdabadi, H.G. (2009). Bulk synthesis of monodisperse Fe nanoparticles by electromagnetic levitational gas condensation method. Materials Letters, 63(5), 575–577. doi:10.1016/j.matlet.2008.11.047
  • [172] Kermanpur, A., Dadfar, M.R., Nekooei Rizi, B., Eshraghi, M. (2010). Synthesis of Aluminum Nanoparticles by Electromagnetic Levitational Gas Condensation Method. Journal of Nanoscience and Nanotechnology, 10(9), 6251–6255. doi:10.1166/jnn.2010.2568
  • [173] Vaghayenegar, M., Kermanpur, A., Abbasi, M.H. (2011). Formation mechanism of ZnO nanorods produced by the electromagnetic levitational gas condensation method. Scientia Iranica, 18(6), 1647–1651. doi:10.1016/j.scient.2011.11.025
  • [174] Sivaprahasam, D., Sriramamurthy, A.M., Vijayakumar, M., Sundararajan, G., Chattopadhyay, K. (2010). Synthesis of FeCu nanopowder by levitational gas condensation process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 41(4), 841–856. doi:10.1007/s11663-010- 9370-8
  • [175] Chen, S.J., Li, X.B., Niu, G., Yi, Z., Chen, Y., Luo, J.S., Sun, W.G. (2012). Synthesis and characterization of single-phase nanocrystalline Ag2Al particles. Transactions of Nonferrous Metals Society of China (English Edition), 22(1), 134–138. doi:10.1016/ S1003-6326(11)61152-7
  • [176] Chen, S.J., Chen, Y., Tang, Y.J., Luo, B.C., Yi, Z., Wei, J.J., Sun, W.G. (2013). Synthesis and characterization of FeAl nanoparticles by flow-levitation method. Journal of Central South University, 20(4), 845–850. doi:10.1007/s11771-013-1556-1
  • [177] Chen, S., Chen, Y., Zhang, H., Tang, Y., Wei, J., Sun, W. (2013). Bulk Synthesis and Characterization of Ti3 Al Nanoparticles by Flow-Levitation Method. Journal of Nanomaterials, 2013, 1–5. doi:10.1155/2013/569537
  • [178] Zhigach, A., Leipunsky, I., Kuskov, M.L., Nadezhda, G.B., Afanasenkova, E.S. (2014). Flow-levitation method – a flexible mean for synthesis of metal-based nanoparticles. Moscow: Conference: XII International Conference on Nanostructured Materials (NANO-2014). doi:10.13140/2.1.3791.3284
  • [179] Biçer, M., Şişman, I. (2010). Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technology, 198(2), 279–284. doi:10.1016/j. powtec.2009.11.022
  • [180] Yang, J.-G., Zhou, Y.-L., Takeshi, O., Ryoichi, I., Masazumi, O. (2007). A new method for preparing hydrophobic nano-copper powders. Journal of Materials Science, 42(18), 7638–7642. doi:10.1007/s10853-007-1899-9
  • [181] Yonezawa, T., Toshima, N. (2001). Adv. Funct. Mol. Polym. In H. S.Nalwa (Ed.),(ed., pp. 65–86). UK: Gordon Breach.
  • [182] Wen, Y., Huang, W., Wang, B., Fan, J., Gao, Z., Yin, L. (2012). Synthesis of Cu nanoparticles for large-scale preparation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177(8), 619–624. doi:10.1016/j.mseb.2012.02.026
  • [183] Battino, R., Rettich, T.R., Tominaga, T. (1983). The Solubility of Oxygen and Ozone in Liquids. Journal of Physical and Chemical Reference Data, 12(2), 163–178. doi:10.1063/1.555680
  • [184] Usman, M.S., ElZowalaty, M.E., Shameli, K., Zainuddin, N., Salama, M., Ibrahim, N.A. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine, 8, 4467–4479. doi:10.2147/IJN.S50837
  • [185] Huang, N.M., Radiman, S., Lim, H.N., Khiew, P.S., Chiu, W.S., Lee, K.H., Chia, C.H. (2009). γ-Ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chemical Engineering Journal, 155(1–2), 499–507. doi:10.1016/j. cej.2009.07.040
  • [186] Xie, W., Xu, P., Liu, Q. (2001). Antioxidant activity of watersoluble chitosan derivatives. Bioorganic and Medicinal Chemistry Letters, 11(13), 1699–1701. doi:10.1016/S0960-894X(01)00285-2
  • [187] Chellat, F., Merhi, Y., Moreau, A., Yahia, L. (2005). Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials, 26(35), 7260–7275. doi:10.1016/j. biomaterials.2005.05.044
  • [188] Chellat, F., Grandjean-Laquerriere, A., LeNaour, R., Fernandes, J., Yahia, L., Guenounou, M., Laurent-Maquin, D. (2005). Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials, 26(9), 961–970. doi:10.1016/j.biomaterials.2004.04.006
  • [189] Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Magny, P., Rivard, C.H., Yahia, L. (2000). In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. Journal of Biomedical Materials Research, 51(1), 107–116. doi:10.1002/(SICI)1097- 4636(200007)51:1<107::AID-JBM14>3.0.CO;2-F
  • [190] Corsi, K., Chellat, F., Yahia, L., Fernandes, J.C. (2003). Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials, 24(7), 1255–1264. doi:10.1016/S0142-9612(02)00507-0
  • [191] Anyaogu, K.C., Fedorov, A.V., Neckers, D.C. (2008). Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir, 24(8), 4340–4346. doi:10.1021/ la800102f
  • [192] Shameli, K., Ahmad, M.Bin, Jaffar Al-Mulla, E.A., Ibrahim, N.A., Shabanzadeh, P., Rustaiyan, A., Zidan, M. (2012). Green biosynthesis of silver nanoparticles using callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506–8517. doi:10.3390/ molecules17078506
  • [193] Das, S.K., Choi, S.U., Yu, W., Pradeep, T. (2008). Nanofluids : science and technology. Wiley-Interscience. Retrieved from https://www.wiley.com/en-us/Nanofluids%3A+Science+and+ Technology-p-9780470074732
  • [194] Grass, G., Rensing, C., Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and environmental microbiology, 77(5), 1541–7. doi:10.1128/AEM.02766-10
  • [195] Percival, S.L., Bowler, P., Woods, E.J. (2008). Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair and Regeneration, 16(1), 52–57. doi:10.1111/j.1524- 475X.2007.00350.x
  • [196] Hamza, I., Faisst, A., Prohaska, J., Chen, J., Gruss, P., Gitlin, J.D. (2001). The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6848–52. doi:10.1073/pnas.111058498
  • [197] Kraemer, H. (1905). The oligodynamic action of copper foil on certain intestinal organisms. Proceedings of the American Philosophical Society, 44(179), 51–65. Retrieved from https://www. biodiversitylibrary.org/part/212101
  • [198] Tetaz, T.J., Luke, R.K.J. (1983). Plasmid-controlled resistance to copper in Escherichia coli. Journal of Bacteriology, 154(3), 1263–1268.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a76dafbc-c00f-4dc4-860b-2890f1b054f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.