Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A single pulse of 2.0 to 3.5 kJ of input energy from a 450 mF capacitor was applied to a commercially pure Ti rod in a N2 atmosphere. The surface of the Ti rod transformed from TiO2 into titanium nitride in times as short as 159 msec, providing a bimodal morphology of the cross-section. A much higher value of hardness that was observed at the edge of the cross-section was attributed to nitrogen-induced solid-solution hardening that occurred during the electrical discharge process. The activation energy (Ea) for the diffusion process was estimated to be approximately 86.9 kJ/mol. Results show that the electrical discharge process is a possible potential method for the nitriding of Ti; advantages include a short processing time and control of the nitrided layer without dimensional changes.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1281--1285
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Sejong University, Faculty of Nanotechnology and Advanced Materials Engineering, Seoul 05000, Korea
autor
- Sejong University, Faculty of Nanotechnology and Advanced Materials Engineering, Seoul 05000, Korea
autor
- Wonkwang Health Science University, Department of Dental Laboratory, Iksan 54538, Korea
autor
- Uiduk University, Division of Green Energy Engineering, Kyeongju 38004, Korea
autor
- Uiduk University, Division of Green Energy Engineering, Kyeongju 38004, Korea
autor
- Korea Aerospace University, Department of Materials Engineering, Goyang-Si 10510, Korea
Bibliografia
- [1] V.S. Saji, H.C. Choe, Met. Mater. Int. 17, 275 (2011).
- [2] F. Petzoldt, V. Friederici, P. Imgrund, C. Aumund-Kopp, J. Korea Powder Metall. Inst. 21, 1 (2014).
- [3] M.G. Kim, Met. Mater. Int. 17, 705 (2011).
- [4] V.K. Balla, A. Bhat, S. Bose, A. Bandyopadhyay, J. Mech. Behav. Biomed. Mater. 6, 9 (2012).
- [5] F.J.C. Braga, R.F.C. Marques, E.A. Filho, A.C. Guastaldi, Appl. Surf. Sci. 253, 9203 (2007).
- [6] H.C. Man, M. Bai, F.T. Cheng, Appl. Surf. Sci. 258, 436 (2011).
- [7] S.Y. Kwak, H.G. Kim, J.M. Byun, J.H. Park, M.J. Suk, S.T. Oh, Y.D. Kim, J. Korea Powder Metall. Inst. 21, 28 (2014).
- [8] S. Sathish, M. Geetha, S.T. Aruna, N. Balaji, K.S. Rajam, R. Asokamani, Wear 271, 934 (2011).
- [9] B. Deng, Y. Tao, D. Guo, App. Surf. Sci. 258, 9080 (2012).
- [10] S. Gokul Lakshami, D. Arivuoli, B. Ganguli, Mater. Chem. Phys. 76, 187 (2002).
- [11] M. Rahman, I. Reid, P. Duggan, D. Dowling, G. Hughes, M.S.J. Hashmi, Surf. Coat. Technol. 210, 4865 (2007).
- [12] L. Thair, U. Kamachi Mudali, R. Asokamani, Baldev Raj, Surf. Eng. 20, 11 (2004).
- [13] R. Wei, T. Booker, C. Rincon, J. Arps, Surf. Coat. Technol. 186, 305 (2004).
- [14] W.H. Lee, Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, C.J. Van Tyne, S.Y. Chang, Arch. Metall. Mater. 60, 1185 (2015).
- [15] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, S.Y. Chang, P.J. Reucroft, S.B. Kim, W.H. Lee, Metals Mater. Int. 21, 337 (2105).
- [16] S.K. Kim, J.K. Park, Metall. Mater. Trans. A 33A, 1051 (2002).
- [17] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, Y.K. Ko, S.B. Kim, S.Y. Chang, W.H. Lee, Metals Mater. Int. 21, 159 (2105).
- [18] Y.J. Jo, Y.H. Jo, J.G. Seong, Y.H. Kim, S.Y. Chang, M.S. Noh, H.G. Jeong, W.H. Lee, Surf. Eng. 31, 885 (2015).
- [19] Y.J. Jo, Y.H. Jo, J.G. Seong, Y.H. Kim, S.Y. Chang, W.H. Lee, Mater. Sci. Technol. 31, 989 (2015).
- [20] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, S.Y. Chang, C.J. Van Tyne, W.H. Lee, J. Nanosci. Nanotechnol. 14, 8429 (2014).
- [21] D.K. Kim, H.R. Pak, K. Okazaki, Mater. Sci. Eng. A 104, 191 (1988).
- [22] D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase transformation in Metals and Alloys, CRC Press, London, 1992.
- [23] F. M. Guclu, H. Cimenoglu, E. S. Kayali, Mater. Sci. Eng. C 26, 1367 (2006).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a76a9c15-a8a4-40a2-ace7-af46eb5c12b9