PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing Inspection Intervals Through Risk Evaluation in Aircraft Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As aircraft fleets age, maintaining operational readiness at an affordable cost becomes increasingly challenging. This is largely due to the rise in Preventive Maintenance Task Requirements (PMTRs) outlined in the Aircraft Maintenance Program (AMP). While aging aircraft may require more frequent inspections, leveraging data from prior inspections enables the optimization of inspection intervals based on risk, ensuring cost efficiency by minimizing unnecessary downtime, while maintaining the required safety level. The primary objective of the AMP is to ensure the airworthiness and operational readiness of an aircraft system throughout their service life. To achieve this, it is essential to establish an acceptable level of risk as a basis for determining optimal PMTR recurrence. The SMART|DT tool, developed with FAA funding, provides a robust framework for conducting risk assessments of aircraft structures using Probabilistic Damage Tolerance Analysis (PDTA), which effectively assesses and manages the risk of structural failure. During the sustainment phase of the Swiss Air Force F/A 18 fleet, data-driven analyses within SMART|DT, and other tailored statistical tools, were performed to evaluate the risks associated with various PMTR intervals. This paper will explain the methodology applied to both Safe-Life and Damage-Tolerance structures, with real-world applications to demonstrate how inspection intervals can be optimized. By doing so, PMTR recurrence can be fine-tuned to enhance aircraft readiness and program affordability while maintaining an acceptable level of safety.
Słowa kluczowe
Rocznik
Tom
Strony
89--101
Opis fizyczny
Bibliogr. 7 poz., rys., tab., wykr.
Twórcy
  • RUAG AG, 175, Seetalstrasse, 6032 Emmen, Switzerland
  • St. Mary’s University, 1 Camino Santa Maria, San Antonio, TX 78228, United States of America
  • RUAG AG, 175, Seetalstrasse, 6032 Emmen, Switzerland
  • RUAG AG, 175, Seetalstrasse, 6032 Emmen, Switzerland
  • RUAG AG, 175, Seetalstrasse, 6032 Emmen, Switzerland
  • RUAG AG, 175, Seetalstrasse, 6032 Emmen, Switzerland
  • Armasuisse, Guisanpl. 1, 3003 Bern, Switzerland
Bibliografia
  • Abernethy, R. B., Breneman, F. E., Medlin, C. H., & Reinman, G. L. (1983). Weibull Analysis Handbook (AFWAL-TR-83-2079). Pratt and Whitney.
  • Departement of Defence. (1985). Failure reporting, analysis and corrective action system (MIL-STD-2155).
  • Federal Aviation Administration. (2008). Metallic materials properties development and standardization (MMPDS-04,).
  • Ocampo, J. D., Crosby, N., Millwater, H., Reyer, M., Mottaghi, S., Nuss, M., Gamble, B., & Hurst, C. (2023). Probabilistic damage tolerance analysis using adaptive multiple importance sampling. 31st ICAF Symposium, Delft.
  • SMART Risk Assessment. (2023). SMART SMall Aircraft Risk Technology. https://www.smart-risk-assessment-software.org/
  • Tridello, A., Boursier Niutta, C., Rossetto, M., Berto, F., & Paolino, D. S. (2023). Statistical estimation of fatigue design curves from datasets involving failures from defects. International Journal of Fatigue, 107882. https://doi.org/10.1016/j.ijfatigue.2023.107882
  • Tuegel, E. J., Bell, R. P., Berens, A. P., Brussat, T., Cardinal, J. W., Gallagher, J. P., & Rudd, J. (2018). Aircraft Structural Reliability And Risk Analysis Handbook Volume 1: Basic Analysis Methods (AFRL-RQ-WP-TR-2013-0132). Air Force Research Laboratory Aerospace Systems Directorate.
Uwagi
This article was presented at the 32nd Symposium of ICAF https://www.icaf2025.com/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a769aadd-3708-4f1d-a532-f1382d14d99b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.