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ABSTRACT. Background: Capital budgeting decisions in the logistics industry often combine three distinct 

characteristics. Firstly, they relate to capital assets – such as vehicles or equipment – being periodically replaced with 

different useful lives and efficiency features, and secondly, their performance is subject to particular operating and 

market risks. Lastly, externalities, such as regulatory interventions and technological evolution, also contribute to 

innovation – and thus also uncertainty – becoming a significant factor in logistics. Accordingly, this paper develops 

a valuation model which takes these characteristics into account and facilitates a robust decision-making process.  

Methods: In order to properly capture the specifics of the problem, the proposed model is based on an application of the 

Life Cycle Cost budgeting method benchmarked to an appropriate functional unit, combined with the Monte Carlo 

simulation and sensitivity analyses of relevant risk factors. 

Results: A realistic case study was developed, providing the necessary input parameters for the method's application. It 

was thus demonstrated that it provides useful and coherent resources for the decision-making process, including the tools 

needed to test various assumptions and determine project risks. 

Conclusions: The presented model and its solution provide results which are superior compared to conventional capital 

budgeting methods in terms of properly capturing the essential value-determining factors for a common type of problem 

encountered in logistics. They are also adequately comprehensive to be applied by practitioners in a real-life managerial 

setting. 
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INTRODUCTION 

In production industries, fundamental 

capital budgeting projects typically feature 

nonrecurring and time-limited investments, 

allowing most decisions to be made based on 

conventional criteria, such as the Net Present 

Value (NPV) or the Internal Rate of Return 

(IRR). In contrast, logistics frequently uses 

servicing systems comprising various kinds of 

vehicles and equipment which periodically 

need to be replaced, maintained or renewed in 

order to achieve and sustain the required 

standard of service at an optimal 

cost[Christopher, 2011]. Particular decisions 

are therefore seemingly marginal and relatively 

small in scale, but their systematic 

shortcomings are likely to result in a gradual 

deterioration of the system's efficiency, which 

would then be extremely difficult to rectify, 

with potentially critical consequences in regard 

to a firm’s competitive position. A strategic 

approach therefore needs to be applied to these 

decisions, integrating a life cycle view with 

decisions made in uncertainty.  

Numerous authors have addressed various 

aspects of broadly related problems. Current 

company practices and their impacts have 

recently been surveyed by Świerczek [2019], 

who looked at the role of demand planning, 
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and by González-Moralejo et al. [2015], who 

focused on the issue of logistics coordination 

through establishing outsourced relationships. 

The outsourcing decision process was 

described by Bajec and Jakomin [2010], while 

Lampe and Hofmann [2014] undertook 

a thorough econometric review of systematic 

risk determinants, leading to valuable 

conclusions on the appropriate costs of capital 

for logistics service providers. Zhang et al. 

[2017] explored the use of real options to 

determine optimal investment timing and 

capacity of logistics infrastructure. 

This paper takes a more particular 

approach. It aims to resolve a characteristic 

problem encountered by decision-makers, 

which will be defined as a case study. A model 

will be developed allowing its general 

parametrization, thus serving as a procedural 

framework for solving a much more broadly 

defined class of problems. Finally, the model 

results will be tested in terms of their 

sensitivity towards selected parametric 

assumptions, which is, generally speaking, the 

main issue faced when using economic 

models, due to the error-in-variable factor 

[Chen et al., 2015]. 

LITERATURE REVIEW AND 

THEORETICAL FOUNDATIONS 

The model uses two fundamental 

techniques, and is novel primarily because of 

their specific combination and the functional 

nature of their feedback, while retaining good 

heuristic characteristics. One is the 

implementation of life cycle costing 

[Woodward, 1997], which mainly serves the 

objective of temporal and functional 

normalization, while the other is parametric 

statistical simulation [Mordechai, 2011], which 

allows the quantitative inclusion of risk 

factors. In this regard, there is some affinity to 

the approach taken by Vlachý [2017] when 

assessing the process of product and 

production innovation in a highly 

indeterminate industry development situation. 

Applications of the life cycle costing (LCC) 

approach have been extremely diverse, and 

notably included the construction industry 

[Opuku, 2013]and the public sector [Dragos 

and Neamtu, 2013]. In recent and more closely 

related applications, Fulton [2018] compared 

the total life costs of electric and hybrid drive 

vehicles, and El-Akruti et al. [2016] 

determined the optimal repair and replacement 

policies for an electric arc furnace used in the 

steel industry, while Favi et al. [2018] focused 

on design process implications in shipbuilding. 

Highlighting the need to take a strategic view 

on life cycle cost decisions, Bescherer [2005] 

noted that up to 70 to 90% of total life costs, 

depending on the industry, are already defined 

in the initial design phase. 

There are some features of life cycle 

costing techniques which are particularly 

relevant in respect to solving the problem 

considered herein. Any LCC analysis is 

typically benchmarked against a functional 

unit rather than a product or service, which 

allows proper comparisons of different 

solutions to the same utility need; such 

a functional unit may then relate to, for 

example, servicing capacity, degree of 

protection or system performance over a 

uniform time horizon [Norris, 2001]. LCC 

analyses are also typical for decision-making 

when variant solutions to a particular problem 

exist, for example with regard to design or 

constructional alternatives, operational 

scenarios, logistics, distribution or recycling. 

Relative, rather than absolute valuation then 

needs to be applied, which results in somewhat 

reduced data requirements [Dhillon, 2010]. 

Finally, as noted by Norris [2001] and 

elaborated by Kong and Frangopol [2003] (see 

also Table 1), in contrast to conventional 

costing LCC frequently extends the scope of 

costs over and above the usual Type I and 

Type II (direct and indirect), to include Type 

III (contingent) and Type IV (intangible). 

Applicable financial formulas using continuous 

compounding and their derivations are 

described in detail by Los [2001]. 

As suggested by numerous studies, 

including Fuss and Vermeulen [2008], and 

Banker et al. [2014], the essential risk factor 

determining the economic viability of capital 

budgeting projects is the product demand, 

while market prices can reasonably be 

considered its proxy. The risk, in turn, can be 

integrated effectively in the assessment using 
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contingent claims analysis, as explained from 

a firm-valuation perspective by Vlachý [2009], 

and more technically by Meier et al. [2001]. 

 

Table 1. Cost type breakdown 
Cost type Description 

Type I (Direct) 
Direct costs of capital investment, labor, raw material, waste disposal; may include both 

recurring and non-recurring costs. 

Type II (Indirect) 
Indirect costs not allocated to the product or process, i.e. overhead; may include both recurring 

and non-recurring costs. 

Type III (Contingent) 
Contingent costs such as fines and penalties, personal injury or property damage liabilities, 

production or service disruption, competition response, etc. 

Type IV (Intangible) 
Difficult to measure costs, including consumer acceptance, customer loyalty, worker morale, 

community relations, corporate image. 
Type V (Externalities) Costs borne by other parties than those directly involved in the life cycle, e.g. society. 

Source: adapted from Norris [2001] and Kong, Frangopol [2003] 

 

In principle, contingent claims problems 

can be solved using several methods, including 

generalized closed-form analytical solutions 

and decision trees [Broadie and Detemple, 

2004], but they would be too complex to be 

practicable wherever substantial path 

dependencies are involved, as in the present 

case, as argued by Vlachý [2016]. We 

therefore apply a parametric statistical 

simulation (Monte Carlo) using Oracle Crystal 

Ball simulation software [Charnes, 2012] with 

100,000 simulation cycles; the processing time 

for such simulation experiments does not 

exceed units of seconds with standard office 

hardware. Basic integration of the Monte Carlo 

simulation in management science problems is 

explained by Anderson et al. [2016]. Detailed 

characteristics of statistical distributions and 

their specific applications in parametric 

simulations are described by Mun [2006]. 

CASE DEFINITION 

A logistics delivery handling mechanism 

uses a critical component which may be 

designed and constructed using two alternative 

technologies, denoted A and B. These 

technologies differ in four life cycle phases: 

production of the component (P), its 

installation in the equipment (N), its operating 

use (U), and its disposal (D). 

From the perspective of total production 

and installation costs, the more sophisticated 

technology A is more expensive, with direct 

and allocated overhead costs amounting to ACP 

= € 4,800, while those of component B are just 
BCP = € 4,000. Installation of A is also more 

costly, with ACN = € 500 direct costs and 

a need to provide each newly fitted mechanism 

with additional control components worth AFN 

= € 1,500, while the installation of B costs just 

BCN = € 400. 

Nevertheless, in the operating phase, 

technology A brings considerable cost benefits. 

In particular, due to improved controls and 

automatization the component decreases power 

consumption by 1 MWh per 10,000 handled 

units and reduces personnel costs by € 1,200 

per year. 

Component B has an expected working life 

of Bρ = 200,000 handled units, and would 

thereafter be disposed of at a cost of BCD = € 

500. Component A has the same ACD = € 500 

disposal cost, but it has a shorter serviceable 

life of Aρ = 175,000 handled units with 

a higher probability of premature breakdown 

than B, which is much more reliable. However, 

A can be refurbished by the producer, normally 

up to two times, at a cost of ARP = € 1,800.  In 

order to avoid highly inefficient new 

component installations into handling 

mechanisms shortly before their retirement, old 

refurbished components will be used whenever 

a mechanism has less than 100,000 serviced 

units left until its scheduled retirement. An 

unscheduled service disruption is estimated to 

cost ADU = € 900, including opportunity costs. 

On average, each handling mechanism 

(which is a universal platform carrying one of 

the components regardless of the technology 

used therein) operates 4,800 hours per year 

and, over that time, handles 160,000 delivery 

units. Its expected lifespan is 1 million handled 

units, which implies a replacement interval of 

cca 6.25 years. 
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The firm uses an continuously compounded 

annual discount rate of 8%. 

MODEL DESIGN 

When using life cycle costing, it is vital to 

identify all relevant cost types and determine 

an appropriate functional unit against which 

total costs will be benchmarked. Clearly, it 

would not be adequate to simply compare the 

costs per device, because each alternative has 

a different structure and duration of its life 

cycle. Therefore, it is most practical to relate 

the functional unit to the number of processed 

units with a convenient benchmark value of 

100,000 units, which thus becomes a measure 

of service time. 

One measurement factor which then needs 

a recalibration is the discount rate. Given the 

stated 8 % annual rate and the expected 

average annual handling of 160,000 units, the 

discount rate per functional unit (i.e. 100,000 

handled units) can be determined as d = 8% × 

100,000 / 160,000 = 5%. Note that such 

a simple linear interpolation is facilitated by 

the use of continuous compounding. 

The life cycle and functional unit costs for 

technology B, which are stipulated solely by  

Type I and II costs, are simple to estimate. Its 

complete life cycle is forecast to last 200,000 

handled units, and includes the initial € 4,000 

cost of production and € 400 component 

installation cost, and the terminal € 500 

disposal cost. Accordingly, the discounted life 

cycle cost for component B can be calculated 

as the net present value of all relevant costs 

according to Equation (1), with t representing 

multiples of functional units. 

  
NPV=∑

t

Ct e
− td

                         (1) 

Substituting for the actual costs in time 

results in BNPV = 4,400 + 500 e-2×5% = € 

4,852, which relates to the component's total 

life of 200,000 serviced units. The functional 

unit cost will then be determined using 

Equation (2), which is an analogy of the well-

known equivalent annual annuity formula, 

where T represents the total life cycle duration 

in functional unit multiples. 

 
C=

NPV

(1− e
− Td)                                    (2) 

Accordingly, we substitute BC = 4,852 / (1 - 

e-2×5%) = € 2,550. Note that periodic costs of 

operation (such as energy, maintenance and 

operator staff) need not be dealt with at this 

point in time, because only the differential vis-

á-vis technology A is relevant for decision-

making. There is also an exact fit of five 

component lives in the planned life of the 

complete handling mechanism, which allows 

perfect replacement scheduling. 

While Type I and II costs are assessed 

deterministically, i.e. using their best point 

estimate, a different approach needs to be 

taken with Type III costs, constituting 

statistically random processes. Namely, there 

is a reliability factor involved, which requires 

the creation of a statistical model for variant A. 

This will be rendered by an exponential 

distribution with its parameter λ = 250,000 

units, representing the mean life expectation of 

the component. Each 1,000,000 unit-long life 

cycle of the mechanism fitted with this 

component will vary because of the different 

lives (and thus replacement and refit timings) 

of each component. 

The life cycle can be simulated using 

a stochastic dynamic process, illustrated by 

Figure 1, with its control parameters listed in 

Table 2. 

The simulation results in a discounted life 

cycle cost ANPV determined according to 

Equation (1) over a period of 1 million 

serviced units. This allows the calculation of 

a functional unit cost according to Equation (2) 

as AC = ANPV / (1 - e-10×5%). For example, 

a randomly generated ANPV = € 1,500 results 

in AC = 1,500 / (1 - e-10×5%) = € 3,812. 

The decision-making criterion in terms of 

preference for technology A or technology B is 

their functional unit cost differential Δ 

determined by Equation (3). 

Δ = AC - BC + OpΔ (3) 

Note that all its terms represent costs and 
OpΔ is the operating cost differential per 
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functional unit. A positive value of Δ therefore 

implies an advantage of A over B, and vice 

versa. 

 

 

 
Source: own work 

 

 Fig. 1. Total cost simulation process for component A 

   
 

Table 2. Control parameters of the cost simulation for component A 
Parameter Description [unit] Quantity 

CP Cost of component production [€] 4,800 

RP Cost of component refurbishment [€] 1,800 

CN Cost of component installation [€] 500 

FN Cost of controls installation [€] 1,500 

DU Cost of service disruption [€] 900 

CD Cost of component disposal [€] 500 

τ Scheduled life of component [units] 175,000 

β Scheduled life of handling mechanism [units] 1,000,000 

ξ Maximum age of handling mechanism to install new component [units] 900,000 

m Maximum number of new component refurbishments 2 

d Discount rate (per functional unit) 5 % 

λ Mean life expectation of component [units] - stochastic distribution parameter 250,000 

ρ Actual life of component [units] stochastic 

k Units currently serviced var. 

n Current number of refits var. 

Source: own work 
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PROBLEM SOLUTION AND 

DISCUSSION 

Decision-making should be based on the 

result of Equation (3). This requires three 

inputs, the functional unit cost for technology 

B, which has already been established as BC = 

€ 2,550, the  functional unit cost for 

technology A, determined by statistical 

simulation using the process in Figure 1, the 

parameters in Table 2 and the operating cost 

differential per functional unit OpΔ. 

The last value requires assessment of 

relevant factor costs and their proper functional 

unit (i.e. 100,000 handled units) allocation. 

Forecasting a wholesale price of energy EP = 

60 € MWh-1 (sensitivity towards this factor 

will be discussed later) and an energy saving of 

1 MWh / 10,000 units, there would be an 

energy cost differential of EΔ = 60 × 1 × 10 = € 

600 per functional unit. Besides this, there will 

be a saving in personnel costs amounting to € 

1,200 per year, which equates to PΔ = 1,200 × 

100,000 ÷ 160,000 = € 750 per functional unit. 

The total is OpΔ = EΔ + PΔ = € 1,350 per 

functional unit. 

These are the final inputs needed for the 

simulation, which generates a probability 

distribution of functional unit cost differential 

results shown in Figure 2. 

 
Source: own work 

 

 Fig. 2. Functional unit cost differential distribution 

   

Essential results of the simulation include 

its mean μ(Δ) = € 153 and its fifth percentile 
5%q(Δ) = € 9, which serves as a convenient 

measure of risk (in other words, the advantage 

of A over B is expected to be € 153, and likely 

to exceed € 9 with a 95 % degree of 

confidence). 

As with any model used for decision-

making, it is now necessary to test the results 

for their robustness in respect to parametric 

assumptions. Two parameters seem 

particularly critical, because of their potential 

volatility or insufficient information; the 

energy price forecast EP on the one hand, and 

the mean component life expectation λ for A 

on the other hand. 

The test uses sensitivity analyses as 

follows: a) the estimates for both parameters 

were reduced by 10 % and 20 %, and b) their 

break-even points (B-E) were determined by 

iteration in respect to μ(Δ) = 0. The results are 

summarized in Table 3. 

 
Table 3. Sensitivity analysis results 

Parameter Base scenario EP(-10%) EP(-20%) λ(-10%) λ(-20%) B-E(EP) B-E(λ) 
EP [€/MWh] 60 54 48 60 60 42 60 
λ [units] 250,000 250,000 250,000 225,000 200,000 250,000 218,000 
μ(Δ) [€] 153 105 55 68 -102 0 0 

5%q(Δ) [€] 9 -32 -59 -52 -221 -128 -124 
Source: own work 

 

The sensitivity analysis clearly shows that 

the operational risk due to a potentially shorter 

mean life of the component compared to the 

expected one is much more significant than the 

price risk of energy. Whereas even a 20% 

decline in the price of energy would still 

clearly merit replacement of component B by 

A and this conclusion would hold unless the 

price were to fall under 42 € MWh-1 (i.e. by 

30%), a relatively moderate increase in the 

component break down rate - given the 
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uncertainty in its estimation - would suffice to 

reconsider such a decision. 

However, further simulation also suggests 

an operational measure, which would mitigate 

this risk and thus again increase the cost 

advantage of A over B. Provided the firm 

increases the scheduled life (i.e. replacement 

time) of component A to τ = 200,000, even an 

actual value of λ = 218,000 units then results in 

μ(Δ) = € 194. Of course, such an adjustment of 

operational procedure would be viable only if 

not constrained by regulatory or other 

overriding factors. 

 

CONCLUSIONS 

This paper developed a model combining 

Life Cycle Cost budgeting with parametric 

statistical simulation to solve a problem in the 

logistics servicing industry related to using 

different technologies. This allowed the 

involvement of conventional cost assumptions, 

as well as operationally dependent contingent 

costs with disparate replacement timings, 

providing for a complete assessment of the 

decision value drivers. It is easy to see how 

this technique can be adjusted to solve a broad 

range of similarly defined problems. 

In contrast to conventional capital 

budgeting methods, the model is capable of 

capturing quality- and customer satisfaction-

related factors (i.e. Type III and possibly Type 

IV costs), which tend to be of particular 

significance in service industries. As a matter 

of fact, the model combines several essential 

components of financial and operational 

analysis in a single integrated framework. 

It has also been shown that developing such 

a model is perfectly viable for industry 

practitioners and - when combined with proper 

sensitivity analyses - simulation-based models 

can therefore provide meaningful and easily 

understandable groundwork for practical 

decision-making.  
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PODEJMOWANIE DECYZJI BUDŻETOWYCH W LOGISTYCE 

STRESZCZENIE. Wstęp: Decyzje kapitałowe budżetowe w logistyce często wyróżniają się trzema 

charakterystycznymi cechami. Są one powiązane z aktywami kapitałowymi, takimi ją pojazdy lub sprzęt, które są 
okresowo zastępowane, z różnymi okresami życia oraz z faktem, że ich działanie podlega operacyjnemu i rynkowemu 

ryzyku. Warunki zewnętrzne, takie jak uwarunkowania prawne, rozwój technologii, innowacyjność (wszystko 

wpływające na niepewność działania) są również istotnym czynnikiem wpływającym na postępowanie w obrębie 

logistyki. W pracy jest zaprezentowany opracowany model ewaluacji, biorący pod uwagę powyżej wymienione 

charakterystyki oraz ułatwiający rozbudowany proces podejmowania decyzji.  

Metody: W celu prawidłowego ujęcia specyfikacji problemu, proponowany model jest oparty na aplikacji metody 

budżetowania Life Cycle Cost w odniesieniu do odpowiedniej jednostki funkcjonalnej, w połączeniu z symulacją Monte 

Carlo and analizą wrażliwości istotnych czynników ryzyka. 

Wyniki: Zostało opracowane realistyczne studium przypadku, dostarczające niezbędnych danych wejściowych dla 

proponowanej metody analizy. Dostarczyło to przydatne spójne dane wejściowe dla procesu podejmowania decyzji, 

włączając w to narzędzia potrzebne do testowania różnych założeń oraz oceny podejmowanego ryzyka.  

Wnioski: Prezentowany model i jego rozwiązane dostarcza wyników porównywanych z konwencjonalnymi metodami 

budżetowania kapitałowego pod względem prawidłowego ujmowania czynników wartościowych dla powszechnie 

występujących problemów w logistyce. Można go stosować w szeroko pojętej praktyce zarządzania.  

Słowa kluczowe: budżetowanie kapitałowe, kosztorys cyklu życia, symulacja Monte Carlo, zarządzanie logistyczne 
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