PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of plastic tunnel equipment on its thermal balance components

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of research conducted in a standard plastic tunnel equipped with thermal screens measuring 144 m2 . During the experiment the thermal screens in the tunnel were either in a folded or unfolded position (both during the radiation weather and at night), whereas vents were closed. Parameters of the ambient climate (the temperature, wind velocity, air humidity and solar radiation intensity) were measured during the experiment, as well as the parameters of the microclimate inside the objects (the temperature and air humidity).Thermal balance including: the change of heat accumulated inside the object, heat gains from the substratum (through radiation and penetration), heat gains from solar radiation and the heat flux loss were formulated for the discussed cases. In result of the analysis the differences of internal temperature were stated for the object with and without thermal screens. It was found that for the identical values of the ambient climate parameters the temperature inside the object without the thermal screen was c.a. 4.0% higher than in the object equipped with the thermal screen. The thermal transmittance value through the object casing was determined and the convert rate of solar radiation to heat causing increase in the internal temperature in the objects both with and without thermal screens.
Rocznik
Tom
Strony
313--324
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
  • Instytut Inżynierii Rolniczej i Informatyki, Uniwersytet Rolniczy im. Hugona Kołłątaja, ul. Balicka 116B, 30-149 Kraków, phone: 12 662 46 17
Bibliografia
  • ABDEL-GHANY A.M. 2011. Solar energy conversions in the greenhouses. Sustainable Cities and Society, 1: 219-226.
  • ABDEL-GHANY A.M., AL-HELAL I.M. 2011. Solar energy utilization by a greenhouse: general relations. Renewable Energy, 36: 189-196.
  • CANAKCI M., AKINCI I. 2006. Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8-9): 1243-1256.
  • CELIK A.N., MUNEER T. 2013. Neural network based method for conversion of solar radiation data. Energy Conversion and Management, 67: 117-124.
  • GRABARCZYK S. 2010. Badania zmienności zużycia ciepła w szklarniach z osłonami energooszczędnymi. Czasopismo Techniczne, Wydawnictwo Politechniki Krakowskiej, 2-B, 4(107): 67-74.
  • KITTAS C., KATSOULAS N., BAILLE A. 2003. Influence of an aluminized thermal screen on greenhouse microclimate and canopy energy balance. Transactions of the ASAE, 46(6): 1653-1663.
  • KURPASKA S. 2003. Modyfikacja wyposażenia technicznego tunelu foliowego w aspekcie jego zapotrzebowania na ciepło. Problemy Inżynierii Rolniczej, 1: 39-46.
  • LAMNATOU C., CHEMISANA D. 2013. Solar radiation manipulations and their role in greenhouse claddings: fluorescent solar concentrators, photoselective and other materials. Renewable and Sustainable Energy, 27: 175-190.
  • NAYAK S., TIWARI G.N. 2008. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings, 40(11): 2015-2021.
  • SANAYE S., SARRAFI A. 2015. Optimization of combined cooling, heating and power generation by a solar system. Renewable Energy, 80: 699-712.
  • SILVA A.M., MIGUEL A., ROSA R. 1991. Thermal radiation inside a single span greenhouse with a thermal screen. Journal of Agricultural Engineering Research, 49: 285-298.
  • SETHI V.P., SUMATHY K., LEE C., PAL D.S. 2013. Thermal modeling aspects of solar greenhouse microclimate control: a review on heating technologies, Solar Energy, 96: 56-82.
  • TEITEL M., BARAK M., ANTLER A. 2009. Effect of cyclic heating and a thermal screen on the nocturnal heat loss and microclimate of a greenhouse. Biosystems Engineering, 102(2): 162-170.
  • VADIEE A., MARTIN V. 2014. Energy management strategies for commercial greenhouses. Applied Energy, 114: 880-888.
  • ZHANG Y., GAUTHIER L., HALLEUX DE D., DANSEREAU B., GOSSELIN A. 1996. Effect of covering materials on energy consumption and greenhouse microclimate. Agricultural and Forest Meteorology, 82(1-4): 227-244.
  • YANO A., ONOE M., NAKATA J. 2014. Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosystems Engineering, 122: 62-73.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a767287d-8662-4a24-9071-373f3a7ebcfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.