PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

O(h5k) accurate finite difference method for the numerical solution of fourth order two point boundary value problems on geometric meshes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metoda różnicowa o dokładności O(h5k), do rozwiązywania dwupunktowych zagadnień brzegowych czwartego rzędu na siatkach geometrycznych
Języki publikacji
EN
Abstrakty
EN
Two point boundary value problems for fourth order, nonlinear, singular and non-singular ordinary differential equations occur in various areas of science and technology. A compact, three point finite difference scheme for solving such problems on nonuniform geometric meshes is presented. The scheme achieves a fifth or sixth order of accuracy on geometric and uniform meshes, respectively. The proposed scheme describes the generalization of Numerov-type method of Chawla (IMA J Appl Math 24:35-42, 1979) developed for second order differential equations. The convergence of the scheme is proven using the mean value theorem, irreducibility, and monotone property of the block tridiagonal matrix arising for the scheme. Numerical tests confirm the accuracy, and demonstrate the reliability and efficiency of the scheme. Geometric meshes prove superior to uniform meshes, in the presence of boundary and interior layers.
PL
Dwupunktowe zagadnienia z warunkami brzegowymi, dla nieliniowych, osobliwych i nieosobliwych równań różniczkowych zwyczajnych czwartego rzędu, występują w różnych obszarach nauki i techniki. Zaprezentowano kompaktowy, trzypunktowy schemat różnicowy do rozwiązywania takich problemów na niejednorodnych siatkach geometrycznych. Schemat ten osiąga dokładność piątego lub szóstego rzędu, odpowiednio na siatkach geometrycznych lub jednorodnych. Proponowany schemat przedstawia uogólnienie metody typu Numerowa, autorstwa Chawli (IMA J Appl Math 24:35-42, 1979), opracowanej dla równań różniczkowych drugiego rzędu. Udowodniono zbieżność schematu, korzystając z twierdzenia o własności średniej, nieredukowalności oraz monotoniczności macierzy blokowo-trójdiagonalnej wynikającej ze schematu. Testy numeryczne potwierdzają dokładność, oraz demonstrują niezawodność i wydajność schematu. Siatki geometryczne wykazują przewagę nad siatkami jednorodnymi, w obecności warstw brzegowych i wewnętrznych.
Rocznik
Strony
55--72
Opis fizyczny
Bibliogr. 43 poz., wz., tab.
Twórcy
autor
  • Department of Mathematics, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
  • Institute of Network Computing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology
Bibliografia
  • [1] Yu-Li Y., Kaveh M., Fourth order partial differential equations for noise removal, IEEE Trans. Image Process. 9, 2000, 1723-1730.
  • [2] Zhong H., Spline-based differential quadrature for fourth order differential equations and its application to Kirchhoff plates, Appl. Math. Model, 28, 2004, 353-366.
  • [3] Timoshenko S., Krieger, S.W., Theory of plates and shells, McGraw Hill, 1987.
  • [4] Chen Y., McKenna P.J., Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations, J. Differ. Equ., 136, 1991, 325-335.
  • [5] Budd C.J., Hunt G.W., Peletier, M.A., Self-similar fold evolution under prescribed end shortening, Math. Geol., 31, 1999, 989-1005.
  • [6] Wasow W., The complex asymptotic theory of a fourth order differential equation of hydrodynamics, Ann. Math., 46, 1948, 852-871.
  • [7] O’Regan D., Solvability of some fourth (and higher) order singular boundary value problems, J. Math. Anal. Appl., 161, 1991, 78-116.
  • [8] Agrawal R.P., Chow, Y.M., Iterative methods for a fourth order boundary value problem, J. Comput. Appl. Math., 10, 1984, 203-217.
  • [9] Aftabizadeh A.R., Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116, 1986, 415-426.
  • [10] Momani S., Noor M.A., Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. Math. Comput., 191, 2007, 218-224.
  • [11] Wazwaz A.M., The numerical solution of spacial fourth-order boundary value problem by the modified decomposition method, Int. J. Comput. Math., 79, 2002, 345-356.
  • [12] Mohyud-Din S.T., Noor M.A., Homotopy perturbation method for solving fourth order boundary value problems, Math. Probl. Eng., 98602, 2007, 1-15.
  • [13] Noor M.A., Mohyud-Din S.T., An efficient method for fourth-order boundary value problems, Comput. Math. Appl., 54, 2007, 1101-1111.
  • [14] Zahra W.K., A smooth approximation based on exponential spline solutions for nonlinear fourth order two point boundary value problems, Appl. Math. Comput., 217, 2011, 8447-8457.
  • [15] Usmani R.A., Taylor P.J., Finite difference methods for solving ( p(x) y")" + q(x) y = r(x), Int. J. Comput. Math., 14, 1983, 277-293.
  • [16] Schroder J., Numerical error bounds for fourth order boundary problems, simultaneous estimation of u(x) and u''(x), Numer. Math., 44, 1984, 233-245.
  • [17] Shanthi V., Ramanujam, N., A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations, Appl. Math. Comput., 129, 2002, 269-294.
  • [18] Twizell E.H., Boutayeb A., Numerical methods for the solution of special and general sixth-order boundary-value problems, with applications to Benard layer eigenvalue problems, Proc. Royal Soc. Lond. A Mat., 431, 1990, 433-450.
  • [19] Jain M.K., Iyengar, S.R.K., Subramanyam, G.S., Variable mesh method for the numerical solution of two point singular perturbation problems, Comput. Meth. Appl. Mech. Eng., 42, 1984, 273-286.
  • [20] Kadalbajoo M.K., Kumar D., Geometric mesh FDM for self-adjoint singular perturbation boundary value problems, Appl. Math. Comput., 190, 2007, 1646-1656.
  • [21] Mohanty R.K., A class of non-uniform mesh three point arithmetic average discretization for y'' = f (x, y, y') and the estimates of y, Appl. Math. Comput., 183, 2006, 477-485.
  • [22] Britz D., Digital simulation in electrochemistry, Springer, Berlin 2005.
  • [23] Roos H.G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations convection diffusion and flow problems, Springer, Berlin 1996.
  • [24] Farrell P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I., Robust Computational Techniques for Boundary Layers, Chapman & Hall/CRC, Boca Raton, 2000.
  • [25] Thomas L.H., Elliptic problems in linear difference equations over a network Watson Scientific Computing Laboratory Report, Columbia University, New York 1949.
  • [26] Bieniasz L.K., Extension of the Thomas algorithm to a class of algebraic linear equation systems involving quasi-block-tridiagonal matrices with isolated block pentadiagonal rows, assuming variable block dimension, Computing. 67, 2001, 269-285 (With erratum in Computing 70, 2003, 275).
  • [27] Numerov B.V., A method of extrapolation of perturbation, Royal Astron. Soc. Mon. Notices. 84, 1924, 592-601.
  • [28] Agarwal R.P., Some recent developments of Numerov’s method, Comput. Math. Appl., 42, 2001, 561-592.
  • [29] Chawla M.M., High accuracy tridiagonal finite difference approximations for non linear two point boundary value problems, J. Inst. Maths. Appl., 22, 1978, 203-209.
  • [30] Chawla M.M., A sixth-order tridiagonal finite difference method for general non-linera two-point boundary value problems, IMA J. Appl. Math., 24, 1979, 35-42.
  • [31] Wang, Y.M.. Numerov’s method for strongly nonlinear two-point boundary value problems, Comput. Math. Appl., 45, 2003, 759-763.
  • [32] Bieniasz L.K., Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations using non-uniform grids, J. Comput. Math. Sci. Eng., 8, 2008, 3-18.
  • [33] Mohanty R.K., Jha, N., Chauhan, V., Arithmetic average geometric mesh discretizations for fourth and sixth order nonlinear two point boundary value problems, Neural Parallel Sci. Comput., 21, 2013, 393-410.
  • [34] Zhang X.Y., Fang, Q., A sixth order numerical method for a class of nonlinear two-point boundary value problems, Numer. Algebra. Contr. Optim., 2, 2012, 31-43.
  • [35] Jha N., A fifth order accurate geometric mesh finite difference method for general nonlinear two point boundary value problems, Appl. Math. Comput., 219, 2013, 8425-8434.
  • [36] Jha N., Mohanty R.K., Chauhan, V., Geometric mesh three point discretization for fourth order nonlinear singular differential equations in polar system, Adv. Numer. Anal., 614508, 2013, 1-10.
  • [37] http://www.maplesoft.com/solutions/education/solutions/matheducation.aspx (access: 30.01.2015).
  • [38] Varga R.S., Matrix iterative analysis, Springer Series in Computational Mathematics, Springer, Berlin, 2000.
  • [39] Henrici P., Discrete variable methods in ordinary differential equations, Wiley, New York, 1962.
  • [40] Young D.M., Iterative solution of large linear systems, Academic Press, New York 1971.
  • [41] Conte S.D., The numerical solution of linear boundary value problems, SIAM Rev., 8, 1966, 309-321.
  • [42] Elcrat A.R., On the radial, flow of a viscous fluid between porous disks, Arch. Ration. Mech. Anal., 61, 1976, 91-96.
  • [43] Takaoka M., Pole distribution and steady pulse solution of the fifth order Korteweg-de Vries equation, J. Phys. Soc. Jpn., 58, 1989, 73-81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a76187c0-c454-4544-813a-ec21de5dfb1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.